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Species distribution modelling is widely used in epidemiology for mapping spatial patterns and the risk of
introduction of diseases and vectors and also for predicting how exposure may alter given future environmental
change, motivated by the high societal impact and the multiple environmental drivers of disease outbreaks.
Although pathogens and vectors have historically been sparsely recorded, monitoring systems and media sources
are generating novel, online data sources on occurrence. Moreover, increasing ecological realism is being
incorporated into distribution modelling techniques, focussing on dispersal, biotic interactions and evolutionary
constraints that shape species distributions alongside abiotic factors and biases in recording effort, common to
pathogens and vectors and wildlife species. Considering pathogens and arthropod vector systems with high
impact on plant, animal and human health, the present review describes how biological records for vectors and
pathogens arise, introduces the concepts behind distribution models and illustrates the potential for ecologically
realistic distribution models to yield insight into the establishment and spread of pathogens. Because distribution
modellers aim to provide policy makers with evidence and maps for planning and evaluation of disease mitigation
measures, we highlight factors that currently constrain direct translation of models to policy. Disease
distributions will be better understood and mapped in the future given improved occurrence data access and
integration and combined (correlative and mechanistic) modelling approaches that are developed iteratively in
concert with stakeholders. © 2015 The Linnean Society of London, © 2015 The Linnean Society of London,
Biological Journal of the Linnean Society, 2015, 115, 664–677.
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INTRODUCTION

Species distribution models are empirical models
relating field observations of the distributions of spe-
cies to environmental predictor variables, based on
statistically or theoretically derived response sur-
faces (Guisan & Zimmermann, 2000). Once such a
model has been parameterized, it can be combined
with continuous spatially gridded data on environ-
mental variables to make predictions to all locations
for which environmental data are available, enabling
the user to create a predictive map of the likely
distribution of the species across an entire landscape

(Elith & Leathwick, 2009). From this basic frame-
work, distribution modelling has been expanded to
incorporate a broader range of ecological theory and
applied to answer fundamental questions in applied
ecology.

Distribution modelling has become particularly
widely used in epidemiology; for mapping current
spatial patterns in incidence of diseases and their
vectors or reservoirs, for understanding how environ-
mental factors may underpin transmission and for
predicting how risk of exposure may change in the
future under environmental and socioeconomic
change (Rogers & Randolph, 2003; Eisen & Eisen,
2010; Hay et al., 2013). Generally, the ultimate goal
of epidemiological distribution modelling is to reduce
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disease impacts (in terms of burden on human or
animal health, or negative economic consequences)
by providing cartographic information that enables
policy makers to make evidence-based decisions; for
example, concerning the risk of introduction of dis-
eases or vectors (Benedict et al., 2007; Lindsay et al.,
2010) or the planning and targeting of surveillance
and interventions (Dicko et al., 2014). The growth in
use of these tools has been facilitated by the increas-
ing availability of ecologically relevant, spatial envi-
ronmental datasets, user-friendly statistical software
for fitting distribution models (Phillips, Anderson &
Schapire, 2006) and data on where diseases occur.
Additional motivation comes from high societal
impacts of pathogens on human, animal and plant
health (Jones et al., 2008; Pautasso et al., 2012), as
well as the increasing realization that disease emer-
gence is often driven by multiple, global, interacting
environmental changes, including landscape, climate
and social factors (Chaves et al., 2008; Jones et al.,
2008; Pautasso et al., 2012). In parallel, ecologists
and epidemiologists have begun to incorporate
increasing ecological realism into distribution model-
ling techniques, including dispersal, biotic interactions
and evolutionary constraints that shape species distri-
butions alongside abiotic factors (Elith & Leathwick,
2009). New developments have often been inspired by
and evaluated on well recorded taxa such as birds,
butterflies and ladybirds (Ara�ujo & Luoto, 2007;
Powney & Isaac, 2015), comprising species whose eco-
logical and environmental requirements are usually
well described. By contrast, pathogens and vector spe-
cies are often sparsely recorded and their life
histories poorly known (Hay et al., 2013).

The present review aims to understand the poten-
tial of new distribution modelling techniques that
incorporate more ecological realism to enhance our
understanding of processes underpinning the arrival,
establishment and spread of pathogens and to yield
mapped information of significance to stakeholders.
Having contrasted the way that biological records are
collected for vectors and pathogens vs. other wildlife
taxa and having introduced the concepts behind dis-
tribution models, we review how (1) dispersal con-
straints and (2) biotic interactions have been
incorporated into distribution modelling and identify
epidemiological situations in which these techniques
may generate most insight into disease patterns. We
highlight situations in which the resulting risk or
occurrence maps have been of particular value to dis-
ease managers and policy makers and delineate some
factors that may lead to some maps and predictions
being used ‘in anger’ by stakeholders, whereas others
remain unused in reports or scientific literature
(Leach & Scoones, 2013). We consider future pros-
pects for improved disease mapping resulting from

new pathways and technologies for gathering and
integrating distributional data for pathogens, hosts
and vectors and highlight key future challenges, such
as accounting for spatial biases in disease reporting or
vector and host recording effort.

BIOLOGICAL RECORDS FOR DISEASE,
VECTORS AND RESERVOIRS

HOW ARE RECORDS GENERATED?

The taxonomy and field ecology of pathogen and
arthropod vector species are often poorly resolved.
Many taxa can only be recorded using specialized
field sampling techniques (e.g. traps for arthropod
vectors baited with host material or semio-chemicals,
or collection of blood samples to screen for human
pathogens) and identified to species using expensive
morphological and molecular methods. Rarely, for
pathogens with symptoms that are easy to identify
and distinguish from co-circulating pathogens (e.g.
ash dieback), there is the potential for occurrence
information to be generated by citizens and expert
volunteers. This is also true of tick vector species
that are large-bodied, slow moving and can be found
feeding on people for several days but not of smaller,
dispersive, cryptic insect vectors such as mosquitoes
and Culicoides biting midges. For example, a scheme
run by Public Health England since 2005 in which
tick specimens collected by members of public, veteri-
narians, clinicians, wildlife charities and academics
are identified and mapped has substantially
increased the known geographical extent of Ixodes
ricinus, the main tick vector of Lyme disease patho-
gen (Borrelia burgdorferi s.l.) in Britain (Jameson &
Medlock, 2011).

More commonly, georeferenced data on the occur-
rence of diseases and arthropod vectors originates
from organized surveys, either as a part of scientific
research projects or surveillance carried out by min-
istries of health or disease or vector control pro-
grammes. Epidemiological studies may report a
number of different epidemiological metrics of occur-
rence, ranging from detailed information on the pro-
portion of individuals infected at a point in space
and time (disease prevalence) to poorer quality infor-
mation, such as disease diagnoses made based on
symptoms (which may confound pathogens) or sero-
logical evidence that a disease had infected individu-
als at some point in the past. Similarly, studies of
arthropod vectors may report simply a snapshot of
the presence or absence of a species, or detailed
information on abundance levels, seasonality and
infection rates. The small geographical extent
(ranging from small subnational regions up to a few
countries) and often sparse spatial sampling of
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organised surveys means that the results of multiple
studies must be compiled to produce distribution
maps spanning the broad spatial scales required by
public and animal health policy makers. Rarely, suf-
ficient data are available for high-quality epidemio-
logical or ecological metrics of maximal use to policy
makers to be mapped, such as spatial variation in
disease prevalence (Gething et al., 2011a). More
often, the information in the high-quality data must
be down-graded to match the more frequent poor-
quality data, generating simpler maps of disease or
vector occurrence (Hay et al., 2013).

Susceptible hosts particularly plants and verte-
brates tend to be more widely surveyed than patho-
gens and arthropod vectors but only a few taxa and
regions are subject to long-term standardized moni-
toring schemes that yield detailed information on
population sizes and range changes (Isaac & Pocock,
2015; Maes et al., 2015). Some studies use available
opportunistic data, sometimes from networks of vol-
unteers (Purse et al., 2013; Maes et al., 2015) to map
hosts; for example, the fruit bat reservoirs of Ebola-
virus and monkey reservoirs of Plasmodium knowlesi
malaria (Pigott et al., 2014b). Unfortunately, the lat-
ter are the exception, rather than rule among human
diseases, in having their wild animal reservoirs
mapped to some degree (Hay et al., 2013). Despite
arising by different methodologies and processes,
datasets of disease or vector occurrence share simi-
larities with the species occurrence datasets more
commonly used in ecological applications of distribu-
tion modelling such as strong spatial variability in
reporting rates. In species occurrence datasets,
recording effort can be biased towards more populous
areas or areas visited regularly by specialist collec-
tors. For diseases and vectors, occurrence is more
likely to be reported in countries, and susceptible
livestock or plant hosts are more likely to be inten-
sively surveyed or censused in regions, with strong
healthcare systems and the necessary funds for sur-
veillance and control programmes. Recording effort
is further biased towards those habitats or hosts
(Cumming, 2002) in which primary disease impacts
are felt (e.g. livestock, crops, people). These biases in
recording rates represent a serious impediment to
accurate mapping of species and disease distribu-
tions (Phillips et al., 2009) and to understanding the
ecological and environmental interactions underpin-
ning transmission.

DATABASES OF EPIDEMIOLOGICAL AND VECTOR

RECORDS

General biological records databases such as the Glo-
bal Biodiversity Information Facility (http://www.
gbif.org) compile occurrence data for a large number

of biological species, including some vectors and res-
ervoirs of human diseases. However, vector species
tend to be under-represented in such databases com-
pared to charismatic arthropod taxa, both with
regard to the total number of records and the spatial
sampling effort across countries (Table 1). Conse-
quently, these resources have largely been used to
supplement other sources of data when constructing
distribution models for vector species (Porretta et al.,
2012). To compensate for this under-representation,
specific databases for epidemiological records or vec-
tor groups have also been developed, most notably in
the VectorMap project (http://www.vectormap.org),
encompassing the MosquitoMap, SandflyMap and
TickMap projects (Foley et al., 2010, 2012). Alongside
the vector occurrence data compiled from wide rang-
ing survey reports and literature, VectorMap pro-
vides some prediction maps of vectors, pathogen and
ecto-parasite data from vertebrate hosts and expert
opinion maps of disease occurrence (Foley et al.,
2012), fostering broadscale understanding of the eco-
logical context of transmission.

Considering global/continental databases of disease
occurrence, these tend to cover only those pathogens
that are notifiable because of their high impacts on
trade and animal or plant products. The World Ani-
mal Health Information System of the Office Inter-
national des Epizooties (OIE, 2014) provides
standardized geographical data on emerging animal
pathogens based on official country reports. The
European and Mediterranean Plant Protection Orga-
nization (EPPO) provides global occurrence data as
part of the Plant Quarantine Data Retrieval System
(PQR) for plant pathogens (EPPO, 2014). In both da-
tabases, occurrence data are accompanied by the eco-
logical and epidemiological trait data which will be
critical for generalizing models between groups of
pathogens but, as is the case with vectors, the occur-
rence data are necessarily skewed towards crops and
livestock rather than wild species.

It is notable that no centralized (global or continen-
tal) database of this kind exists for notifiable human
diseases. Epidemiological data provided on the World
Health Organization (WHO), Center for Disease Con-
trol and European Centre for Disease Control (ECDC)
websites tends to be at national scale that is insuffi-
cient for distribution modelling. As a consequence, col-
lation of human disease occurrence records for
epidemiological distribution modelling typically
requires manual searches for suitable disease occur-
rence information from various literature sources
encompassing repositories of published scientific arti-
cles such as PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) and Web of Knowledge (http://wokinfo.com/),
repositories of surveys containing disease incidence
data such as the Global Health Data Exchange (http://
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ghdx.healthdata.org/), as well as less formal records of
disease occurrence such as the ProMed mail archives
(www.promedmail.org), which provide short ad-hoc
reports on emerging and re-emerging diseases. Only a
subset of these reports contain disease occurrence
data that can be used in a distribution modelling
study. Consequently, this approach to data collection
is very time consuming and costly, limiting progress
in mapping infectious diseases (Hay et al., 2013). It is
helpful, where this process has been carried out, for
the resulting disease- or vector-specific database to
subsequently be made freely available to other
researchers (Pigott et al., 2014a), preventing duplica-
tion of this significant effort and fostering develop-
ment of multiple competing models to explain disease
patterns. In the absence of a centralized disease occur-
rence data repository, these datasets are scattered
across different online repositories and institutional
data archives, reducing their accessibility to research-
ers.

Even though occurrence data may be more widely
available for susceptible hosts than for pathogens or
vectors, there is again a lack of centralized, accessi-
ble databases. Global atlases have been developed
for the distributions of some wild and domestic reser-
voirs of human and animal pathogens (Jenkins,
Pimm & Joppa, 2013; Robinson et al., 2014). In both
ecological and epidemiological distribution modelling,
the availability of occurrence data is hindered by a
lack of transparency from official bodies (Hay et al.,
2013), partly as a result of the disparate regulations
surrounding the protection of personal information.
Where differences in official reporting and regula-
tions follow national or regional boundaries, these
issues only add to the aforementioned spatial bias in
reporting rates. By developing multiple models for
diseases and vectors, it is more likely that the vari-
ous epidemiological, ecological and social processes
underpinning risk will be determined (Leach &
Scoones, 2013) and, thus, resolving the issues of
accessibility of data to the wider scientific community
is critical.

WHAT ARE DISTRIBUTION MODELS AND
HOW DO THEY RELATE TO NICHES?

As described above, distribution modelling involves
matching geographical patterns in species (or com-
munity) occurrence with patterns in environmental
factors to understand the mechanisms governing spe-
cies distributions. A wide range of statistical meth-
ods are available to fit such models and their
relative performance has been extensively reviewed
elsewhere (Elith & Graham, 2009). These correlative
or top-down approaches contrast with mechanistic,
bottom-up approaches that mathematically describe
the biological processes underpinning population per-
formance (or transmission) and require detailed
knowledge of species life cycles and ecological
requirements (Rogers, 2006; Dormann et al., 2012).
For some of the more intensively studied diseases,
sufficient knowledge is available to mechanistically
model parts of the disease transmission process, such
as the link between temperature and vector-borne
disease transmission (Gething et al., 2011b). How-
ever, even these detailed models are unable to cap-
ture all environmental drivers of disease
transmission, let alone more complex socioeconomic
factors, and consequently are best used in conjunc-
tion with correlative approaches (Hartemink et al.,
2011). Because such knowledge is generally lacking
for most pathogen systems, correlative distribution
models are often the most viable option for predict-
ing and understanding patterns in transmission
(Rogers, 2006; Hay et al., 2013).

Although correlative distribution models have been
widely used to make predictions of species’ (and dis-
eases’) distributions, there is ongoing debate in the
ecological literature regarding exactly what these
distributions represent (Warren, 2012, 2013; McInerny
& Etienne, 2013). The lack of consensus on how
distribution modelling relates to niche concepts is
probably caused not only by inconsistency of niche
definitions, but also the variability in data, methods
and scale across studies (Ara�ujo & Guisan, 2006;

Table 1. Availability of records for vector groups (mosquitoes and hard ticks) in national (BRC) and international

(GBIF) databases compared to selected charismatic arthropod taxa (butterflies and ladybirds)

Taxa Family name

Number of records
Coverage of UK (10 km2)

BRCBRC GBIF

Mosquitoes Culicidae 3000 186 400 800

Hard ticks Ixodidae 4500 29 900 970

Butterflies Nymphalidae 2 000 000 2 335 900 3500

Ladybirds Coccinellidae 150 000 373 400 2500

BRC, UK Biological Records Centre; GBIF, Global Biodiversity Information Facility (both accessed June 2014).

© 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115, 664–677

RECORDING AND MODELLING DISEASE IMPACTS 667

http://ghdx.healthdata.org/
http://www.promedmail.org


Soberon, 2007). Some studies have suggested that, if
the realized niche is the subset of abiotic environ-
mental space to which a species is restricted by biotic
interactions (Hutchinson, 1957), then, by definition,
known occurrence points used to generate distribu-
tion models represent the realized niche (Phillips
et al., 2006). Fundamental or environmental niches
are only considered to be approximated by distribu-
tion models when occurrence data are drawn from a
broad geographical extent (relative to the total range
of the species in question) (Phillips et al., 2006).
Other studies caution against such generalizations
(Elith & Leathwick, 2009), arguing that the different
niches quantified using observed occurrences of spe-
cies reflect an unknown conjunction of the environ-
mental niches of the species, the biotic interactions
they experience and the habitats available to species
and colonized by them (Soberon, 2007).

These concerns are likely to be all the more rele-
vant to pathogens, which are (1) intimately affected
by biotic interactions, requiring hosts and sometimes
vectors for persistence; (2) often under-recorded
(infections of many pathogens occur subclinically in
reservoir populations); and (3) increasingly being
introduced into new geographical areas where they
are not in equilibrium with their environments. If
we want to infer niche components from distribution
models for pathogens, then it may be particularly
important to carefully consider adequacy of input
data, sources of prediction uncertainty and test out
ways of incorporating dispersal limitation and tro-
phic and competitive interactions into models (Elith
& Leathwick, 2009). Some of these aspects are dealt
with below.

It is important to note that distribution modelling
is unlikely to yield insights into environmental fac-
tors and processes governing distribution for all
pathogens and reservoirs or vectors. Minimum pre-
requisites for the success of these techniques are
that the organisms involved are sensitive to external
environmental factors (e.g. poikilothermic arthropod
vectors that are highly sensitive to temperature and
moisture variability) and must themselves display
spatial variation in occurrence. For example,
amongst infectious diseases of humans, Hay et al.
(2013) highlighted that endogenous infections caused
by previously inapparent or dormant pathogens aris-
ing from the typical commensal microbial flora of
humans showed little sustained global spatial varia-
tion in occurrence compared to pathogens in trans-
mission categories that were inherently linked to the
environment such as vector-borne pathogens, or soil
or water contact pathogens. Ideally, basic informa-
tion on life history should be available (vectors, res-
ervoirs, hosts and routes of transmission) to enable
identification of appropriate environmental drivers,

and sufficient quantity and quality of occurrence
data to enable robust inference.

RECENT IMPROVEMENTS IN ECOLOGICAL
REALISM OF DISTRIBUTION MODELS

ACCOUNTING FOR DISPERSAL AND COLONIZATION

PROCESSES DURING INVASION

Correlative species distribution models (SDMs)
assume that a species is in equilibrium with its envi-
ronment (i.e. that the species has had sufficient time
to sample all potentially suitable habitat in the
region used to train the model) (Elith, Kearney &
Phillips, 2010). This assumption clearly does not hold
in the case of newly invading pathogens or vectors
that are still in the process of expanding their distri-
bution into all environmentally suitable locations. In
such situations, the distribution of the invader at
any point during the invasion will be strongly driven
by dispersal and colonization processes in addition to
environmental suitability (Vaclavik & Meentemeyer,
2012). In these cases, absence of the species may
simply reflect that the species has yet to arrive,
rather than environmental exclusion (Meentemeyer
et al., 2008; Jimenez-Valverde et al., 2011).

Regardless of whether the aim of the distribution
modelling study is to evaluate the potential distribu-
tion of an invading pathogen or vector (all sites at
risk of invasion) (Benedict et al., 2007) or the species’
current distribution, it is crucial to understand and
account for these dispersal processes. Both forms of
modelling can provide crucial data to guide surveil-
lance for invasions and to target mitigation options.

Very rarely, researchers have been able to conduct
intensive fieldwork to track and model the actual
distribution at a fine scale during invasion of a
pathogen or vector (Rouget & Richarson, 2003;
Meentemeyer et al., 2008; Vaclavik & Meentemeyer,
2009, 2012; V�aclav�ık et al., 2010). Studies of this
kind on the sudden oak death pathogen, Phytophtho-
ra ramorum, in the USA have revealed that, if true
absence data and dispersal parameters are not incor-
porated into the model, predictions of the actual dis-
tribution are less accurate and tend to overpredict
the actual range of invasion (V�aclav�ık et al., 2010).
The spatial autocorrelation caused by colonized sites
tending to cluster around initial invasion foci will
inflate not only model accuracy, but also the esti-
mated explanatory power of environmental predic-
tors (particularly when these are distally related to
the requirements of the focal species) and under-
estimate uncertainty in model parameters (Dormann
et al., 2007).

Various methods have been proposed for incorpo-
rating dispersal processes into distribution models.
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These include simple dispersal kernels and distance
decay formula where propagule pressure is assumed
to decline with distance from already infected sites
(Allouche et al., 2008; Meentemeyer et al., 2008;
Leighton et al., 2012) and more complex mechanistic
simulation models of species dispersal to new loca-
tions (Sedda et al., 2012). Often, the knowledge of
species-specific dispersal processes and location of
already infected sites required to implement these
methods is unavailable. This is typical for invading
pathogens (where undetected circulation in reservoir
hosts may be common) and vectors. In these cases,
dispersal limitations have often been accounted for
in correlative distribution models, albeit in a less
explicit way, by modelling residual spatial autocorre-
lation. The application of spatially-explicit models to
invading pathogens has been reviewed and evaluated
on the sudden oak death system at multiple scales
(Vaclavik, Kupfer & Meentemeyer, 2012).

Inference about the dispersal mechanisms con-
straining the distributions of invasive species and
predictions of those distributions will both be
improved when models incorporate connectivity mea-
sures that are related to ecological knowledge. For
example, models accounting for landscape or habitat
structure (Ellis, V�aclav�ık & Meentemeyer, 2010) or
pathways of dispersal such as wind (Sedda et al.,
2012), host migration (Vaclavik et al., 2012) and
human-mediated movement (Gilbert et al., 2005) are
likely to have greater predictive power than those
which assume connectivity to simply be a function of
distance.

When the goal is to predict the potential distribu-
tion of pathogens and vectors introduced into new
areas, it should be noted that the full environmental
niche will not be effectively captured with occurrence
data from early in the invasion because full occu-
pancy of suitable habitats is prevented by dispersal
constraints (Vaclavik & Meentemeyer, 2012). Conse-
quently, when SDMs are developed in the early
stages of invasion, they tend to under-predict the
potential range (Vaclavik & Meentemeyer, 2012).
The same is likely to be true when surveillance of
pathogens or vectors is sparse or geographically
biased across the species’ true distribution (Elith
et al., 2010). Both of these problems may be allevi-
ated to some degree if the available occurrence data
are distributed across heterogeneous environments
and models employ environmental predictors that
are proximally related to species’ requirements. The
stage of invasion at which occurrence data are drawn
not only impacts on model performance, but also on
the reliability of accuracy statistics. Metrics of pre-
dictive accuracy, such as the very widely used area
under the curve, are strongly influenced by variation
in the relative occurrence area (i.e. the ratio between

the extent of the species’ true occurrence and the
extent of study region) (Lobo, Jimenez-Valverde &
Real, 2008; Elith et al., 2010; Hijmans, 2012). A
number of practical, heuristic approaches have been
proposed to account for these issues, including the
upweighting of occurrence records with few neigh-
bours in geographical space (to compensate for
records being relatively dense in areas of first
appearance in a region and sparse in newly invaded
areas) and testing out different options for represent-
ing ‘background’ locations (for presence-only meth-
ods) (Elith et al., 2010), although these have yet to
be widely adopted in distribution models of invading
vectors or pathogens.

Alternatives to parameterizing models with occur-
rence data from early in an invasion, include building
correlative models based on data from the species’
native range and projecting them to potential intro-
duction sites (Benedict et al., 2007) or developing
mechanistic models based on physiological responses
of organisms to their environment (Elith et al., 2010;
Caminade et al., 2012). The former requires careful
consideration of whether and where conditions in the
extrapolation area are novel either with respect to
their combinations of abiotic conditions (e.g. through
multivariate environmental distance measures such
as the mahalanobis distance) or biotic interactions in
terms of natural enemies or competitors and whether
the species may have shifted its environmental niche
during invasion (Medley, 2010). The approaches are
also likely to be of little use in the case of novel patho-
gens, such as emerging viruses for which there is
no clear ‘native range’ to model. Using reciprocal
distribution modelling, Medley (2010) found that the
distribution of Aedes albopictus, a key mosquito
vector of Dengue, was underpredicted in introduced
regions of north and south America and Europe based
on the environmental niche quantified from the native
range, suggestive of a niche shift. Subsequently,
methods of quantifying niche overlap have been devel-
oped to account for the potential difference in repre-
sentation of environmental conditions (between
native and introduced ranges or between species)
(Broennimann et al., 2012). Peterson (2011) also
points out that, when niches are parameterized in
highly dimensional environmental space, a niche shift
is more likely to be detected and it is suggested that
this is a likely reason why Medley (2010) found a
niche shift during Aedes albopictus invasion, whereas
Benedict et al. (2007) found niche stasis for the same
system. This again highlights the importance of using
predictors that are tightly related a priori to the
known ecological requirements of the focal species
and also the need to avoid over-fitting when using
species distribution modelling to compare environ-
mental niches.
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UNDERSTANDING BIOTIC INTERACTIONS INFLUENCING

TRANSMISSION

Despite their importance in driving species’ distribu-
tions, very few species distribution modelling studies
have explicitly incorporated biotic interactions
(Ara�ujo & Luoto, 2007; Elith & Leathwick, 2009;
Wisz et al., 2013). This is particularly problematic
when extrapolating models to predict potential distri-
butions under invasion or climate change because
natural enemies or competitors may have far reach-
ing effects, particularly if novel combinations of
species occur (Elith & Leathwick, 2009). Predictions
of actual distributions will be inaccurate, especially
for species where hosts are critical for persistence
(Elith & Leathwick, 2009).

Possibly because vector-borne pathogens are
known to be so intimately constrained by biotic inter-
actions, it has become relatively common in correla-
tive distribution models of vector-borne pathogens or
blood-sucking arthropod vectors to add the occur-
rence or abundance of host or vector species as pre-
dictors alongside abiotic variables, resulting in
significant improvements in model accuracy (Conte
et al., 2007; Purse et al., 2012), insights into the role
of hosts as regulators of vector population abundance
(Cumming, 1999) and more refined estimates of
potential transmission extent under future environ-
mental change (Daszak et al., 2013).

Other studies have developed individual species
distribution models for all interacting species poten-
tially involved in transmission in a focal region and
then visualized (Peterson & Shaw, 2003; Purse et al.,
2007) or explicitly quantified (R€odder, Schulte &
Toledo, 2013) overlap of environmental niches in
environmental space defined by key abiotic variables.
Sometimes, these approaches can allow inferences to
be made about the relative role of particular vectors
or reservoir species in current transmission when
laboratory or field data on infection rates are difficult
to obtain. For example, during the emergence of a
midge-borne sheep disease, bluetongue, in southern
Europe in the last century, it was shown that trans-
mission had spread outside the environmental niche
of the historical midge vector, Culicoides imicola,
into cooler and wetter areas as a result of transmis-
sion by palearctic vector groups (Purse et al., 2007,
2008). In the Americas, R€odder et al. (2013) found
high niche overlap between the fungus, Batracho-
chytrium dendrobatidis, a major cause of amphibian
declines, and an invasive alien bullfrog, Lithobates
catesbeianus, strengthening hypotheses that this frog
species is a major carrier. Again, the fungus was
found in environmental space in which this bullfrog
was not present, implicating native wild frogs also in
transmission (Fig. 1).

Other studies have projected environmental niches
of the different species involved in the ‘epidemiologi-
cal triangle’ of a pathogen system onto future climate
conditions aiming to understand the relative sensi-
tivity of member species to environmental change
and how and where overlap of hosts and/or vectors
critical to transmission may be maintained (Daszak
et al., 2013; Pickles et al., 2013). For example, Pickles
et al. (2013) found a geographical mismatch in
areas of habitat predicted to be suitable in the
future for a free-living nematode meningeal parasite
(Parelaphostrongylosis tenuis) of deer vs. those pre-
dicted to be suitable for its gastropod intermediate
host and were consequently able to identify areas of
North America where the resulting disease (parel-
aphostrongylosis) would be expected to expand or
contract.

The approaches thus far described are most feasi-
ble for situations where very few species are
involved in host-pathogen–vector interactions. In sce-
narios where multiple hosts and vectors are involved
in transmission, with unknown roles, community
modelling approaches may hold more promise for
understanding biotic interactions (Kissling et al.,
2012). Using biological records, Stephens et al.
(2009) analyzed the co-distribution across Mexico of
over 400 mammal species and sand fly species that
might be involved in transmission of Leishmaniasis
to construct inter-species interaction networks, by
identifying and ranking the extent to which pairs of
vectors and reservoir mammals were positively asso-
ciated in geographical space. For example, four par-
ticular rodent species, previously found to be
infected with Leishmania in the field, were identified
as being associated geographically (in the Yucatan
peninsula) with a wide spectrum of vector species,
offering high potential for parasite exchange. It is
acknowledged that sampling bias arising from use of
clustered, presence-only data may have influenced
their results. This approach was later extended to
examine co-distribution of vectors and mammal res-
ervoirs with particular land cover types aiming to
identify species assemblages that (1) posed a high
risk of transmission to humans by virtue of being
present in both natural habitats and human settle-
ments or (2) posed an additional risk of dispersing
the disease by virtue of also being found in cropland
habitats that form corridors between natural habi-
tats and human habitation (Gonz�alez-Salazar & Ste-
phens, 2012).

However, by modelling species interactions solely
from geographical co-occurence or combining abiotic
and biotic predictors in single species distribu-
tion models, the influence of species interactions
and environmental covariates may be confounded
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(Kissling et al., 2012; Pollock et al., 2014). Explana-
tory power might be spuriously ascribed to a host
species simply because the pathogen and host spe-
cies are independently affected by a missing but
unknown environmental predictor. Such similarities
in environmental responses of species can be accom-
modated in multispecies SDMs (and the unobserved
environmental gradients driving species co-occurrence
may even be inferred (Harris, 2015; Ovaskainen,
Hottola & Siitonen, 2010) but, where biotic inter-
actions are the primary focus of investigation, new
methods that model interactions between multiple
species explicitly using error matrices in multivari-
ate regression models of spatial co-occurrence data
may hold more promise (Kissling et al., 2012;
Pollock et al., 2014). When such techniques were
applied to UK mosquito communities on grazed
wetlands, key predatory taxa constraining mosquito
distributions alongside temperature and water level
variability were revealed (N. Golding, M.A. Nunn &
B.V. Purse, in review).

For the most complete understanding of the rela-
tive role of vector and reservoir species in transmis-
sion from distribution or community models, it is
necessary to include data on the occurrence of all
potential interacting species in the focal region
(Daszak et al., 2013; Sedda et al., 2014). Daszak
et al. (2013) note that the distribution of wildlife
reservoir hosts has been rarely incorporated into dis-
tribution models. Indeed, for vector-borne pathogens
affecting humans and animals, densities of people
and livestock may have been more commonly consid-
ered as explanatory predictors of distribution than
wildlife hosts, possibly because they tend to be
mapped more accurately (Robinson et al., 2014).

VALUE OF MAPPING OF VECTORS,
RESERVOIRS, AND DISEASES TO DISEASE

MANAGERS AND POLICY MAKERS

Although epidemiological applications of species dis-
tribution models are increasingly reported in the
scientific literature, particularly over the last
5 years (Fig. 2), direct impacts of predictions and
risk maps on policy and mitigation measures are
documented only rarely (Leach & Scoones, 2013).
Here, with reference to some recent case study
models with policy impacts, we highlight some of
the factors that may constrain or promote use of
outputs of correlative disease distribution models by
stakeholders and policy makers, with a view to
improving these linkages.

One conceptual problem limiting application of dis-
tribution models may be that vector or pathogen
occurrence may only be indirectly related to intensity
of transmission or disease impacts. Additional factors
such as the relative abundance and composition of
vectors and hosts, host recovery rates and infectious
periods, and opposing impacts of temperature on the
transmission cycle also come into play. This complex-
ity and nonlinearity is arguably better captured by
mechanistic modelling frameworks that explicitly
consider mathematical relationships between demo-
graphic rates and environmental factors (e.g. the
basic reproduction number framework) (Rogers,
2006). However, the epidemiological data necessary
to construct such a model are simply unavailable for
a wide range of diseases. Although correlative
approaches to estimating epidemiologically relevant
metrics are more widely applicable, the fact that
underlying processes are not explicitly identified
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may hamper the design of mitigation measures
(Braks et al., 2014).

As a result of flexibility in the number and type of
predictors that can be accommodated, correlative
models of disease occurrence have sometimes per-
formed better than mechanistic models at capturing
the social and ecological context of transmission,
resulting in high impacts on policy decisions (Leach
& Scoones, 2013). For example, Gilbert et al. (2005)
found, amongst the environmental, topographic and
social predictors considered, that frequency of cattle
movements was the most important explanatory pre-
dictor of occurrence patterns of bovine tuberculosis
in Great Britain (in 2002 and 2003). The study under
consideration formed part of the evidence base for
introducing a policy of cattle movement controls to
control disease spread (Godfray et al., 2013).

For highly pathogenic avian influenza (H5N1) out-
breaks in Thailand (Gilbert et al., 2006), correlative
models were used to link disease prevalence with the
density of free-ranging ducks and, in turn, to a par-
ticular rice-paddy duck farming system, common in
low elevation farming areas. Consequently, surveil-
lance and control were directed towards domestic
ducks, contributing to the eradication of H5N1 from
Thailand without vaccination. In this case, correla-
tive models translated local epidemiological knowl-
edge of risk factors in a quantitative way (i.e. risk
maps) that could be communicated easily to decision
makers to influence policy (M. Gilbert, pers. comm.).

Decisions on mitigation measures often need to be
made when the threat of disease is still only modest
or before definitive information is available (Leach &
Scoones, 2013). A key advantage to policy makers of
correlative distribution models vs. mechanistic mod-
els may be the potential to provide an explanation of
disease patterns early on in an epidemic of an exotic
pathogen because the former may be parameterized
from initial or historical outbreak data (with care;
see the earlier section on Recent improvements in
ecological realism of distribution models) before
detailed ecological knowledge is available from the
invaded region. From a relatively small number of
previous outbreak events, a correlative distribution
model was recently used to map locations in sub-
Saharan Africa where Ebola virus is most likely to
spill over from its zoonotic reservoir in and trigger
outbreaks in human populations (Pigott et al.,
2014b) and to identify regions where outbreaks have
so far not occurred but may do in the future. These
quantitative maps will facilitate the development
and targeting of diagnostic resources to ensure that
future outbreaks of the virus are detected and con-
trolled in their early stages before they can acceler-
ate into large-scale public health emergencies such
as that seen in West Africa in 2014 (Farrar & Piot,
2014).

Developing mechanistic models for emerging
pathogens in new ecological contexts in a timely
fashion can be much harder; for example, the midge-
borne bluetongue virus, which causes devastating
disease in livestock, was circulating in Europe for
approximately 10 years before sufficient information
was available to parameterize simplified basic
reproduction number maps, indicating the geographi-
cally variable risk of establishment, at a national
(Hartemink et al., 2009) or continental scale (Guis
et al., 2012).

One of the most robust uses of correlative distribu-
tion modelling has been in motivating and spatial
targeting of surveillance for vectors or pathogens,
particularly early in invasion when information on
the geographical extent of the problematic species
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may be very poor. For example, in West Africa, an
exotic cattle tick species, Rhipicephalus microplus,
that transmits Babesia and Anaplasma pathogens
was introduced from Brazil (probably on imported
cattle) approximately 8 years ago and has estab-
lished viable populations in Benin and Cote D’Ivoire.
A research project (TICKRISK) was established link-
ing field estimates of occurrence of R. microplus with
modelling of the environmental niche (De Clercq
et al., 2012, 2013). The resulting prediction maps
were used by the stakeholders to lobby the Ministry
of Agriculture successfully for (1) an increased bud-
get to tackle problems related to ticks in general and
the invasive tick in particular and (2) a moratorium
on import of cattle from Brazil. In Benin, it is not
clear whether it was the research project as a whole
or specifically the use of prediction maps that was
responsible for these decisions, although the maps
were considered as strong images. In Burkina Faso,
the prediction maps resulted in a programme of
directed sampling in the most suitable areas for this
tick, where it was indeed found. After confirmation
of the presence of the invasive tick, a nationwide
survey was undertaken (E. De Clercq pers. comm.).

It is rarer at present for species distribution model
outputs and maps to be used for detailed spatial tar-
geting of control measures at local scales; but see
Dicko et al. (2014). This is probably because their
spatial resolution tends to be coarse relative to the
scale at which control or surveillance is conducted.
Local scale abundance or prevalence patterns may be
harder to predict than regional scale occurrence pat-
terns as a result of the interplay of wide ranging
climate, landscape, social and ecological factors for
which it may be difficult to identify fine resolution
spatial proxies (Purse et al., 2012).

FUTURE CHALLENGES AND
OPPORTUNITIES FOR TRACKING THE

SPREAD AND IMPACTS OF DISEASES WITH
BIOLOGICAL RECORDS AND DISTRIBUTION

MODELLING

The high value and lack of centralised global data-
bases for human pathogens and vectors has been
highlighted. Considering how records for pathogens
and vectors are generated, early warning systems
and media sources such as Twitter are providing
novel, online, often real-time data sources on disease
occurrence that may prove invaluable for disease
modelling (Sedda et al., 2014).

A key example is HealthMap (http://health-
map.org/en), as produced by the Computational Epi-
demiology Group of the Children’s Hospital, Boston,
MA, USA), which monitors and maps health alerts

worldwide from eleven sources of news and reports,
including ProMed, Google News, WHO, OIE and
ECDC (Brownstein et al., 2008). To foster the devel-
opment of multiple models that offer different per-
spectives on epidemiological, ecological and social
processes (Leach & Scoones, 2013), or predictions at
different geographical/temporal scales, improvements
in data accessibility and integration are still
required. An understanding of the evolutionary pro-
cesses involved in disease and vector spread will be
facilitated if databases can link molecular and
genomics data for pathogens and vectors with occur-
rence recording (Porretta et al., 2012; Pybus et al.,
2012).

Occurrence data from such sources are likely to be
subject to significant spatial biases in reporting rates
(Isaac & Pocock, 2015). Statistical methodologies to
account for such biases in the recording of vectors
and pathogens are beginning to be developed. Other
key challenges for translating species distribution
models built using such data into risk maps of value
for risk governance are: (1) understanding how vec-
tor population abundance or pathogen transmission
intensity scale with predicted occurrence (a problem
currently being addressed in species distribution
models in ecology (Ya~nez-Arenas et al., 2014); (2)
understanding how human behaviour influences the
recorded occurrence of pathogens; and (3) quantify-
ing the uncertainty in risk map outputs in a manner
that is comparable between modelling approaches
(Sedda et al., 2014). We argue that use of ecologically
realistic species distribution modelling methods that
incorporate dispersal constraints, biotic interactions
and social factors will help to meet all of these chal-
lenges.

Where there is a lack of detailed ecological or epi-
demiological information in an invaded region or
where local ecosystem and social processes underpin
transmission, correlative models of disease or vector
occurrence may offer considerable advantages over
mechanistic modelling approaches. Where local or
regional epidemiology is better understood, insights
from correlative species distribution models on spa-
tial patterns in vectors or hosts may be incorporated
into mechanistic models of transmission to better
understand processes of establishment and spread
(Hartemink et al., 2011; Meentemeyer et al., 2011).

Overall, Leach & Scoones (2013) caution against
thinking of modelling as ‘an objective, neutral scien-
tific exercise that linearly informs policy’ and note
that models themselves are shaped by social, politi-
cal and cultural norms and by prevailing policy nar-
rative. Modellers must interact with stakeholders
and policy makers to understand trade-offs in health
priorities, key field-level risk factors and the optimal
scale and format for communicating maps and
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results. The impacts of this approach are clear in
several of the case studies reported above where
correlative models were used to translate local
knowledge of ecosystem and social risk factors into
maps and other formats of benefit to policy makers.
Ultimately, the challenge will be to combine biologi-
cal records and ecological modelling with the aim of
analyzing the impacts of disease and disease man-
agement at a whole ecosystem level to allow decision
makers to evaluate potential trade-offs between eco-
system services (Cheatham et al., 2009; Boyd et al.,
2013).
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