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Biological records are one of the most important sources of data for a large number of research areas. For example,
their application has made valuable contributions to climate change ecology, where they are used to monitor species
range shifts; to conservation ecology, where they are used to assess species’ Red List status; and to biogeography,
where they are used to highlight hotspots of biodiversity. A major benefit of biological records is the large spatial
extent of the coverage combined with the fine spatial precision of the data: this combination is essential for any
ecologist hoping to address large-scale questions about biodiversity and environmental change. Because most
biological records are collected by a vast pool of volunteer recorders, studies utilizing biological records have the
advantage of large-scale long-term data that it would otherwise be unfeasibly expensive to collect. We review the
application of biological records by focussing on four key areas of biodiversity research: biogeography, trend
assessments, climate change ecology, and conservation biology. We showcase the diversity of insights that biological
records have delivered, which in turn illustrates the contribution of the voluntary recording community to our
understanding of biodiversity science. © 2015 The Linnean Society of London, Biological Journal of the Linnean
Society, 2015,
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INTRODUCTION

Knowledge of the spatial and temporal distribution of
species is vital to many areas of research. Biological
records are one of the most important sources of data
contributing to this knowledge globally (Hochachka
et al., 2012), and the UK is probably the best-recorded
country on earth [almost one-eighth of the records on
the Global Biodiversity Information Facility (GBIF)
originate from the UK; https://code.google.com/p/gbif-
occurrencestore/wiki/IndexDataAnalysis, accessed
27/11/2014]. Biological records originate from a
variety of sources, including targeted research pro-
jects, although most records are collected by a vast
number of volunteer recorders. One of the major
advantages of biological records data is the large
spatial extent of the coverage (i.e. national) combined

with the fine spatial precision (most records are col-
lected at 1 km2 or finer): this combination describes
the ‘holy grail’ of datasets that ecologists need to
address large-scale questions about biodiversity and
environmental change (Beck et al., 2012). Therefore,
studies that utilize biological records have the advan-
tage of large-scale long-term data that would be
unfeasibly expensive to collect without the effort of
volunteer recorders. In the last 10 years, 12 atlases
and over 200 research articles have been published
using UK biological records alone.

Biological recording has grown markedly in recent
decades (Isaac & Pocock, 2015), partly as a result of
the technological developments that have made
species identification and submitting records accessi-
ble to wider public participation (August et al. 2015).
With these improvements, the size and taxonomic
breadth of species distribution datasets are expected
to rise (Silvertown, 2009; Dickinson et al., 2012;
Miller-Rushing, Primack & Bonney, 2012). This*Corresponding author. E-mail: gary.powney@ceh.ac.uk
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growth in data collection highlights the importance of
recording schemes and organizations that host online
portals that increase data accessibility, such as
the National Biodiversity Network Gateway (NBN
Gateway; http://www.nbn.org.uk/) and GBIF (http://
www.gbif.org/). Additionally, this growth has been
accompanied by a broadening of the taxonomic basis
of studies using biological records, from the well-
studied birds, butterflies, and vascular plants
(Thomas et al., 2004a) to ladybirds (Roy et al., 2012),
woodlice (Purse et al., 2012), pollinating insects
(Carvalheiro et al., 2013), and Odonata (Powney et al.,
2014).

Here, we review the application of biological records
in four areas of biodiversity research: biogeography,
trend assessments, climate change ecology, and
conservation biology. We showcase the diversity of
insights that biological records have delivered and
celebrate the achievements of the voluntary recording
community.

BIOGEOGRAPHY AND MACROECOLOGY

Biogeographical and macroecological studies require
large-scale distribution data and have therefore ben-
efited from the increase in availability of biological
record data. A key response variable in biogeographi-
cal studies is species richness. Biological records are
frequently used to estimate species richness, although
it can also be estimated from expert-drawn species
range maps. To extract richness from range maps, a
spatial grid can be overlaid onto a series of extent of
occurrence maps, with richness estimated as the
cumulative number of species ranges that fall within
each cell. Richness based on biological records is
simply a count of the number of species occurring in
each grid cell. Both techniques have strengths and
weaknesses that tend to be scale-dependent: range
maps tend to overestimate richness (a greater level of
false presences), whereas gaps in biological record
data lead to an increase in false absences and there-
fore an underestimation of richness (Hurlbert &
White, 2005; Hurlbert & Jetz, 2007). Species richness
has been mapped for a variety of taxonomic groups
across a range of geographical regions. Rahbek &
Graves (2001) mapped species richness patterns of
the avian fauna of South America, which was
extended to the global scale by Orme et al. (2005).
Global richness maps are also available for amphib-
ians and mammals (Stuart et al., 2004; Grenyer et al.,
2006). More recently, Rouse, Spencer Jones & Porter
(2014) mapped the richness of marine bryozoans off
the coast of Scotland using data that were partly
extracted from the NBN Gateway. Richness maps are
usually static and estimated for a distinct time
period; however, by using long-term data, some

studies have estimated temporal change in richness;
for example, Ball-Damerow, M’Gonigle & Resh (2014)
examined change in Odonata richness of California
and Nevada over the last century, finding that drag-
onfly richness had declined across all sites. Recently,
Carvalheiro et al. (2013) used biological records to
show that declines in the species richness of pollinat-
ing insects have slowed in recent years.

Richness is one of many metrics of biodiversity that
are frequently derived from biological records; others
include beta, phylogenetic, and functional diversity
(Magurran & McGill, 2011). As with species richness,
these other metrics of biodiversity can be estimated
using a variety of functions. Essentially, each of these
metrics measures turnover between species commu-
nities (Magurran & McGill, 2011), with beta diversity
based purely on species composition and phylogenetic
diversity incorporating evolutionary history into the
measure, whereas functional diversity is based on the
ecological characteristics of a species (Petchey &
Gaston, 2002; Flynn et al., 2011; Srivastava et al.,
2012). Biological records are often used to identify
spatial turnover in species composition across a
gridded landscape (Lennon et al., 2001); consequently,
they can be used to highlight regions of conservation
interest (more details are provided further below).

A potential limitation of the use of biological
records for estimating richness and diversity patterns
is that spatial variation in recorder effort can lead to
spatial bias in distribution maps (i.e. areas that have
been intensely surveyed are likely to have higher
richness, whereas poorly studied regions will have a
higher level of false absences) (Isaac & Pocock, 2015).
When using a large dataset of plant observations to
estimate plant richness in South Africa, Robertson &
Barker (2006) noted a spatial bias in the data and
used the relationship between climate and richness to
map under-surveyed regions. Hill (2012) outlined an
approach to highlight and account for poorly recorded
regions based on the frequency of common ‘bench-
mark’ species within local neighbourhoods. Finally,
species distribution models (SDMs) have been used to
predict species richness in poorly studied regions
(Elith et al., 2006; Thuiller et al., 2009). These models
identify species-specific associations with various
environmental variables (usually climate and habitat)
and then use these associations alongside various
gridded environmental layers to produce a suitability
surface/predicted distribution for each species. These
predicted distributions are treated as presence
absence data and are summed to create a corrected/
predicted richness for each grid cell. Newbold et al.
(2009) used a SDM approach to create corrected rich-
ness maps for the mammal and butterfly fauna of
Egypt, finding that richness tended to be higher
within protected areas. Vasconcelos, Rodríguez &
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Hawkins (2011) fitted SDMs to data from GBIF to
identify richness patterns in New World Amphibians.
They found that the models performed well at pre-
dicting richness patterns compared to expert opinion,
and concluded that the SDM approach is a useful
macroecological tool for investigating broad-scale
richness patterns. The SDM approach has several
important assumptions and limitations, which means
that derived richness values tend to be overestimated
(Vasconcelos et al., 2011). Thus, raw biological records
and SDMs set the lower and upper bounds on the
likely number of species in any grid cell.

Understanding the processes that drive the spatial
patterns in species richness and diversity is a popular
area of research for biogeographers. Several studies
have examined environmental correlates of species
richness, generally finding that, at the broad-scale,
climate variables tend to be key drivers of richness
(Currie, 1991; Field et al., 2009). Blackburn &
Gaston, (1996) found that New World bird richness
was related to solar radiation and primary productiv-
ity, whereas Powney et al. (2010) found that lizard
richness was highest in the hot, dry regions of Aus-
tralia. Using data from GBIF, Giannini et al. (2013)
found that bee and plant richness in South America
was positively associated with precipitation and, in
areas of lower precipitation, the interactions between
bees and plants tended to be more specialized. Other
studies have used gridded distribution data to
test macroecological rules, such as Rapoport’s rule
(Kerswell, 2006).

A variety of research areas require detailed species
level trait data, and some of these traits can be
directly derived from biological records. A simple trait
frequently extracted from biological records is species
range size. This can be estimated simply as the com-
bined area of all occupied grid cells, although more
complicated methods, such as α-hulls and localized
convex hulls (Burgman & Fox, 2003; Getz & Wilmers,
2004; Getz et al., 2007; Maes et al., 2015) attempt to
fill in data gaps and therefore produce more accurate
results (although genuine gaps can be mistakenly
filled). Range size is an important metric of species’
rarity (Gaston, 2003), it is an essential component of
extinction risk (Purvis et al., 2000), and it has been
used in a huge number of studies (Blackburn &
Gaston, 1996; Jetz & Rahbek, 2002; Botts, Erasmus &
Alexander, 2012).

Climate and habitat associations are regularly
derived from biological records. Species climate
indices have been estimated as the mean
temperature/rainfall of all occupied grid cells
(Devictor et al., 2008; Powney et al., 2013). Binomial
logistic regression has also been used to estimate
species climate and habitat associations (Lundy,
Montgomery & Russ, 2010). Oliver et al. (2009)

estimated the preferred habitat of butterfly species as
the habitat type containing the highest density of
records. They then used the ratio of records in the
preferred habitat and subordinate habitat as a
measure of habitat specificity. A method known as
ecological niche factor analysis (ENFA) combines
species presence records and habitat layers to esti-
mate the difference between a species habitat require-
ment and that of a given landscape (Hirzel et al.,
2002). ENFA compares the species niche breadth in
multivariate space to the niche breadth of the overall
study region, with the difference between the two
forming the marginality score (the higher the mar-
ginality score, the more marginal the niche breadth of
the species relative to the study region). A related
approach is to use species co-occurrences to identify
biogeographical boundaries. Finnie et al. (2007) used
biological records to identify ‘floristic elements’ in
Europe; this approach was later refined using biologi-
cal records in Britain and Ireland (Preston, Harrower
& Hill, 2011; Preston et al., 2013). Wilson et al. (2004)
highlighted fractal dimension (FD) as a measure of
fragmentation of a species distribution, suggesting
that aggregated distribution patterns reflect range
expansion, whereas a fragmented distribution is char-
acteristic of the process of range decline. The FD of a
species distribution was calculated as the slope of the
relationship between the log of the area of occupancy
at the 10-km and 100-km scales plotted against the
log of the length grid cell at each scale. More recently,
FD has been superseded by more sophisticated tech-
niques for measuring the shape of a species distribu-
tion, and these have been applied to biological records
data on plants (Azaele et al., 2012) and dragonflies
(Barwell et al., 2014).

This section illustrates that, through their applica-
tion in the mapping of diversity patterns and their
use in deriving species level trait data, biological
records have made a major contribution to several
areas of biogeographical and macroecological
research.

ESTIMATING SPECIES TRENDS

Trends in species’ status are a key currency for meas-
uring biodiversity loss and responses to environmen-
tal change. The long-time span covered by biological
records makes them an excellent data source for
estimating trends, although the semi-structured
nature of the recording process presents many chal-
lenges to trend estimation (Hill, 2012; Isaac et al.,
2014; Isaac & Pocock, 2015).

Trend estimation from biological records can be
traced back to Perring, (1970) who examined threat-
ened plant species in Britain. Consecutive atlases
have been a popular source for trend estimation, an
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early example of such comes from the publication of
the New Atlas of Breeding Birds in Britain and
Ireland 1988–1991 (Gibbons, Reid & Chapman, 1993).
By comparing the number occupied grid cells with the
original atlas (Sharrock, 1976), it was possible to
reveal large changes in the distribution of many bird
species over two decades. The New Atlas of Breeding
Birds was followed by the Millennium Atlas of But-
terflies in Britain and Ireland (Asher et al., 2001) and
the New Atlas of the British and Irish Flora (Preston,
Pearman & Dines, 2002), both of which included
sections on species trends. Thomas et al. (2004a) used
the three atlas pairs to compare losses and gains
across these taxonomic groups in a study that is
frequently cited with regard to the global extinction
crisis.

In recent years, statistical ecologists have devel-
oped a suite of methods for estimating robust trends
from biological records at the same time as account-
ing for uneven recording intensity (Szabo et al., 2010;
Hill, 2012; van Strien, van Swaay & Termaat, 2013;
Isaac et al., 2014). A feature common to many newer
techniques is the use of fine spatial and temporal
resolutions (e.g. per km2 and year) for modelling,
rather than aggregated to atlas-type resolution,
which means that trends can be reported over shorter
time periods (e.g. per decade) and without the need
for repeat atlases. These modern trend-estimating
techniques have been used in recent British atlas
publications for ladybirds (Roy et al., 2011), hoverflies
(Ball et al., 2011), bryophytes (Blockeel et al., 2014),
and dragonflies (Cham et al., 2014) and invertebrates
of early successional habitats (Thomas et al., 2015).
Robust trend estimates from biological records are an
important resource in both pure and applied ecology.
Trends for individual species form a critical compo-
nent of the assessment process for International
Union for Conservation of Nature (IUCN) Red Lists
(Maes, 2015). Aggregate trends across species are a
major component of biodiversity indicators (JNCC,
2013; WWF, 2014) and have provided some of the best
evidence for large-scale biodiversity losses (Thomas
et al., 2004a; Burns et al., 2013; Dirzo et al., 2014).

We have highlighted the vital role that biological
records play in the estimation of species trends. Such
species level trends are crucial for determining
species’ conservation status and for helping research
that aims to identify the main drivers of such trends.

CLIMATE CHANGE ECOLOGY

Anthropogenic climate change is a major threat to
biodiversity as it is responsible for species range
shifts, phenological changes, and declines in abun-
dance (Parmesan et al., 1999; Willis et al., 2008;
Gregory et al., 2009; Bellard et al., 2012). Much of this

evidence is based on knowledge gained through
analyses of biological records. Contributions to
climate change ecology are some of the most impor-
tant applications of biological records and, with the
continued rise in greenhouse gas emissions, the
impact of climate change is likely to persist and
intensify (IPCC, 2013).

Climate limits species distribution patterns, with
the upper and lower thermal tolerance of a species
forming the boundaries of its temperature niche.
There is a wealth of evidence suggesting that species
distributions are shifting polewards to track the shift
in their climatic niche (Thomas & Lennon, 1999;
Crozier, 2004; Walther et al., 2007; Chen et al., 2011;
Mason et al., 2015). This evidence has been observed
from shifts in species range margins (Parmesan et al.,
1999; Hickling et al., 2006; Franco et al., 2006; La
Sorte & Thompson, 2007) and from temporal changes
in the thermal preference of communities (Devictor
et al., 2008) and has also been observed in species of
terrestrial and marine environments (Perry et al.,
2005; Sorte, Williams & Carlton, 2010). Additionally,
SDMs have been used to predict range shifts under
future climate scenarios (Jones et al., 2013). However,
evidence suggests that predictions from SDMs should
be interpreted with caution because their predictive
accuracy tends to be poor (Rapacciuolo et al., 2012).
Altitudinal range shifts have also been found in
response to climate warming. Using data from GBIF,
Feeley et al. (2010) found upward shifts in tropical
Andean tree species in response to elevated tempera-
tures, becoming one of the first studies to document
such shifts in tropical plant communities.

The intensity, and in some cases direction, of these
range shifts is not uniform within or between taxo-
nomic groups (Thomas et al., 2004b; Lenoir et al.,
2008; Hill & Preston, 2015). The potential impact of
this variation on community structure and in turn the
functioning and resilience of ecosystems is a cause for
concern (Lenoir et al., 2008; Walther, 2010), with evi-
dence showing that change in community structure
can result in mismatch between trophic and func-
tional groups (Edwards & Richardson, 2004; Lauzeral
et al., 2010; Thackeray et al., 2010; Schweiger et al.,
2012).

Changes in phenology, the timing of key ecological
events, have been observed in response to climate
change (Menzel et al., 2006; Thackeray et al., 2010;
Walther, 2010). Analyses based on the long-term
trend in the date of the annual first appearance of a
species often provide useful insights into the impact
of climate change on biodiversity. Using abundance
data collected by a vast number of volunteer record-
ers, Roy & Sparks, (2000) reported significant
advancement in the first appearances of most butter-
fly species in the UK. These changes were measured
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over a 20-year period, leading to the conclusion that
they were a result of climate warming. A similar
pattern was discovered in the flight dates of British
and Dutch Odonata (Hassall et al., 2007; Dingemanse
& Kalkman, 2008). Related to first appearance, the
arrival dates of 18 common migratory bird species in
North America have advanced over time, based on an
analysis of eBird data (Hurlbert & Liang, 2012; eBird:
http://ebird.org/content/ebird/). Phillimore et al.
(2010) used biological records of the common frog
(Rana temporaria) to show that spawning dates were
related to local climate conditions and predicted that
the species would need to advance their spawning
date by 21–39 days to track projected climate
warming. The value of biological records was high-
lighted by Bishop et al. (2013) who found phenological
events estimated from opportunistic biological records
can accurately predict those extracted from more
robust structured surveys. Menzel et al. (2006)
reviewed numerous phenological studies, including
many studies based on biological records, finding that
climate-driven phenological shifts are occurring
without doubt. The concerns surrounding pheno-
logical changes mirror those for variation in species
range shifts, in that changes may lead to trophic
and functional groups mismatches (Edwards &
Richardson, 2004; Lauzeral et al., 2010; Thackeray
et al., 2010; Schweiger et al., 2012).

APPLIED ECOLOGY AND
CONSERVATION BIOLOGY

Biological records are vitally important to applied
ecology and conservation biology. Their use has
made significant contributions to conservation
prioritization, the planning and assessment of protect
area networks, the study of invasive species, estimat-
ing species trends, and the subsequent understanding
of the drivers of such trends.

The limited resources available for conservation,
and the consequent need to maximize the efficiency of
conservation efforts, is the basis of conservation
prioritization research. Conservation prioritization
tends to focus on spatial aspects of biodiversity and,
as highlighted above, biological records are frequently
used to map spatial patterns of diversity. These maps
play an important role in conservation prioritization,
where they are used to highlight hotspots of bio-
diversity (Myers et al., 2000; Moilanen, Wilson &
Possingham, 2009). Furthermore, species can be
grouped in such a way that the resulting maps reflect
the spatial patterns of species of conservation concern
(e.g. endemic species, priority species: Orme et al.,
2005; Grenyer et al., 2006). Additionally, species com-
plementarity algorithms can be used to efficiently

select the optimal set of cells that capture the major-
ity of species (Grenyer et al., 2006; Thomas et al.,
2013). A limitation of this approach is that it leaves
little buffer for future biodiversity loss. Losses as a
result of stochastic events can be intensified and the
priority patches are often isolated and therefore vul-
nerable to the negative impacts of habitat fragmen-
tation (Fahrig, 2003; Wiegand, Revilla & Moloney,
2005). Furthermore, the results of such studies tend
to fall short of being implemented practically but,
instead, act as a call to arms for biodiversity conser-
vation. Although the application of biological records
to conservation prioritization has tended to focus on
spatial aspects of biodiversity, it has also been applied
at the species level. A key example of species level
prioritization is Red Listing (Maes, 2015), with a
recent example being the plant Red List for England
(Stroh et al., 2014). Dolman, Panter & Mossman
(2012) presented a form of biodiversity auditing,
which combines biological records with autecological
information to create spatially-informed evidence-
based conservation management priorities.

Spatial conservation prioritization has clear links
to protected area design and management. A key
question for conservation science and natural
resource agencies is whether protected areas are
effective. Biological records have contributed to our
understanding of this issue because recent evidence
from biological records has shown that UK protected
areas contain a disproportionate amount of wildlife
(Gillingham et al., 2014) and provide stepping stones
for species to shift their distributions in response to
climate change (Thomas et al., 2012). As noted
above, SDMs have been used to predict future
species distribution patterns under various climatic
projections. These future predictions can be related
to the current protected area network to estimate
the future coverage and potential mismatches
between the protected area network and projected
hotspots of biodiversity (Araújo et al., 2004). This
approach was employed by Araújo et al. (2011) to
examine projected plant and terrestrial vertebrate
distributions in Europe, and Jones et al. (2013) to
examine the project distributions of 17 marine ver-
tebrates. Both conclude that the policy surrounding
reserve design needs to consider future changes in
species distributions and that SDMs are a valuable
tool in this regard.

By combining two of the applications of biological
records above: ‘species’ trend assessments’ and ‘deriv-
ing traits from biological records’, it is possible to gain
valuable insights in to some of the main drivers of
such trends. Responses to environmental change are
not uniform across all species (Parmesan et al., 1999;
Angert et al., 2011; Polce et al., 2011), and this vari-
ation in species response can be partly explained by
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variation in species trait characteristics (Purvis et al.,
2000; Reynolds, Webb & Hawkins, 2005; Angert et al.,
2011; Newbold et al., 2013). Comparative trait-based
studies that link trends with species’ traits has
allowed researchers to move beyond statistical
descriptions of changes in species’ status, towards a
deeper understanding of the mechanisms driving bio-
diversity loss (Fisher & Owens, 2004; Cardillo et al.,
2005; Cowlishaw, Pettifor & Isaac, 2009). A classic
example is provided by Fuller et al. (1995) who exam-
ined trends in British birds: they found that 86% of
farmland bird species declined in distribution
between 1970–1990 compared to just 51% of
nonfarmland species, revealing the devastating effect
of agricultural intensification on bird populations.
Similarly, habitat loss has also been implicated as the
major force driving changes in the British flora, with
habitat specialists and species with lower competitive
ability declining most rapidly (Preston et al., 2002;
Powney et al., 2013). A suite of species traits predict
long-term trends in the distribution of British moths,
with strong regional variation reflecting both climate
change and habitat loss as drivers of change (Fox
et al., 2014). Biesmeijer et al. (2006) showed that the
species richness of wild bees declined in Britain and
the Netherlands, with specialized species declining
fastest. This is important given that the status of
pollinating insects is currently an issue of major
concern among scientists and policy makers (Klein
et al., 2007; POST, 2010; Potts et al., 2010; Garratt
et al., 2014). Biological records have provided some of
the most compelling evidence on the status of wild
pollinators. Despite the decline in wild bees, the news
is not all gloomy because hoverfly species richness
generally increased in both countries (Biesmeijer
et al., 2006), and more recent evidence suggests that
some declines, particularly wild bees, may have been
reversed subsequent to 1990 (Carvalheiro et al.,
2013).

Invasive species are alleged to be a key cause of
biodiversity loss (Hooper et al., 2005), although evi-
dence linking invasions to species declines has been
limited (apart from on pristine island ecosystems;
MacDougall & Turkington, 2005). Invasive and non-
native species have been historically under-recorded,
although the arrival of the harlequin ladybird,
Harmonia axyridis, in northern Europe was the
stimulus for one of the first online recording schemes,
established in Belgium in 1999 and in Britain in
2005. The result is an unusually rich source of data
on the spread of H. axyridis and its impact across two
countries, which has revealed a direct link between
the arrival of H. axyridis and declines in a majority of
common native ladybird species (Roy et al., 2012).
Recently, SDMs have been applied to predict future
hotspots for biological invasions, finding that the

distributions of terrestrial and aquatic invasive inver-
tebrates are likely to substantially expand (Bellard
et al., 2014).

The value of biological records for conservation
biology is clear. With their large spatial coverage and
fine-scale spatial precision, they are essential for con-
servation prioritization, monitoring the threat of
invasive species and understanding the main drivers
of biodiversity loss. Crucially, they enable ecologists
to examine large-scale processes that would
unfeasibility expensive to address without the volun-
tary contribution of recorders.

CONCLUDING REMARKS

Our review has highlighted the enormous breadth of
scientific questions for which biological records have
provided answers. The growth of citizen science
means that datasets of biological records are likely to
grow even faster, providing a wealth of research
opportunities for ecologists and conservation biolo-
gists. Additionally, with the recent adoption of hier-
archical Bayesian techniques by ecologists, uneven
recording effort can be modelled explicitly (van Strien
et al., 2013; Beale, Brewer & Lennon, 2014; Isaac
et al., 2014), thus greatly expanding the potential
scientific uses of biological records data.
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