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Ecological forecasting is difficult but essential, because reactive management results in corrective actions that are
often too late to avert significant environmental damage. Here, we appraise different forecasting methods with a
particular focus on the modelling of species populations. We show how simple extrapolation of current trends in
state is often inadequate because environmental drivers change in intensity over time and new drivers emerge.
However, statistical models, incorporating relationships with drivers, simply offset the prediction problem,
requiring us to forecast how the drivers will themselves change over time. Some authors approach this problem
by focusing in detail on a single driver, whilst others use ‘storyline’ scenarios, which consider projected changes
in a wide range of different drivers. We explain why both approaches are problematic and identify a compromise
to model key drivers and interactions along with possible response options to help inform environmental
management. We also highlight the crucial role of validation of forecasts using independent data. Although these
issues are relevant for all types of ecological forecasting, we provide examples based on forecasts for populations
of UK butterflies. We show how a high goodness-of-fit for models used to calibrate data is not sufficient for good
forecasting. Long-term biological recording schemes rather than experiments will often provide data for ecological
forecasting and validation because these schemes allow capture of landscape-scale land-use effects and their
interactions with other drivers. © 2015 The Linnean Society of London, Biological Journal of the Linnean
Society, 2015, 115, 767–778.
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WHY ATTEMPT TO FORECAST?

Two very different masters teach [man] his lesson:
experience and foresight. Experience teaches effi-
ciently but brutally. . .I should prefer, in so far as
possible, to replace this rude teacher with a more
gentle one: foresight (Fr�ed�eric Bastiat, 1848)

Predicting the future is notoriously difficult. Many
great thinkers have tried, and spectacularly failed.
For example, in 1895, Lord Kelvin, a Scottish mathe-
matician and physicist is famous to have forthrightly
stated to have ‘not the smallest molecule of faith’ in
aerial flight beyond ballooning, just 8 years before
the Wright brothers put together the first successful
fixed wing aeroplane. Similarly, in a 1961 interview
T.A.M. Craven the US Federal Communications
commissioner of the time famously predicted: ‘There is

practically no chance communications space satellites
will be used to provide better telephone, telegraph,
television or radio service inside the United States’.
Only a few years later, satellites were in space
performing all the above services. So perhaps it is best
to keep our heads below the parapet and not make
predictions that, in retrospect, appear foolhardy?

In many fields of research, however, forecasting –
prediction of future states based on past events, is
essential. Forecasts allow us to alter our behaviours in
response to likely realisations of future events in order
to reduce costs or maximise benefits. In the environ-
mental sciences, for example, weather forecasts,
which have improved greatly in recent decades, pro-
vide huge overall benefit to society. In the longer term,
climatological forecasts provide critical guidance to
help steer our socioeconomic systems away from
unsustainable and self-destructive pathways. There
are still many dangers associated with ‘getting it
wrong’ (as UK weather forecaster Michael Fish*Corresponding author. E-mail: toliver@ceh.ac.uk
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famously did in 1987 when he told people not to worry
about a hurricane just hours before winds reaching
122 mph hit southern England). However, hiding
away from making forecasts is often not an option,
because this path leads to greater overall costs than
making predictions that are occasionally wrong.

In ecological science, forecasting is also essential.
It forms part of a set of tools, including horizon scan-
ning (Sutherland et al., 2008; Roy et al., 2014) and
risk assessments (Mace et al., 2008; Thomas et al.,
2011), that enable us to anticipate future changes
and respond appropriately. Reactive responses to
new environmental impacts caused through changes
in socioeconomic systems (e.g. adoption of new tech-
nologies), may often be too late to avert significant
environmental damage.

For example, the pesticide DDT caused substantial
losses to bird populations before it was finally
banned (US Environmental Protection Agency, 1975;
Pimentel, 2005). In Europe, agricultural subsidies,
paid to farmers to increase food production and secu-
rity, have led to increased loss of natural or semi-
natural habitats, and have been a primary cause of
European biodiversity decline (Van Swaay et al.,
2010; UK NEA, 2011; Inger et al., 2014). The
responses to mitigate these environmental impacts
and others have mostly been reactive, in that they
occurred only when damage had begun. In contrast,
risk assessments based on experimental evidence of
pesticide toxicity along with ecological modelling to
predict potential impacts on species populations at
larger spatial scales could have enabled proactive
preventative measures to be taken.

In many cases, due to slow decision making and
policy implementation, significant damage has been
done before ameliorative actions are in place. The
slow progress to develop co-operative global actions
to halt climate change may turn out to be another
such example, with potentially very large conse-
quences for the environment and society (IPCC,
2014). In other cases, policy responses may be rap-
idly formulated based on hastily gathered evidence.
In both situations there are strong benefits of early
evidence gathering, ecological modelling and risk
assessment to inform timely and evidence-based pol-
icy decisions. It should be recognised, however, that
it will never be possible to foresee all ecological prob-
lems and some environmental management will have
to be reactive.

In understanding the chain of events leading to
environmental impacts, the ‘DPSIR’ (driver, pressure,
state, impact, response) framework can be useful
and is widely used (Fig. 1; European Environment
Agency, 2007; United States Environmental Protec-
tion Agency, 2014). This framework illustrates the
causal links between the ultimate drivers of environ-

mental degradation (e.g. population growth), the prox-
imate pressures (e.g. food production) on the state of
the environment (e.g. biodiversity) and their final
impacts on humans (e.g. loss of well-being through
degradation of ecosystem services that are under-
pinned by biodiversity). Societal responses may then
be put in place to ameliorate these impacts. These
may tackle the ultimate drivers (e.g. campaigns to
educate on the environmental impacts of population
growth) or proximate pressures (e.g. sustainable food
production) or try to address the state of the environ-
ment directly without addressing drivers and pres-
sures (e.g. improving the quality of semi-natural
habitats that are known to support a high diversity of
specialised species). However, the key problem with
the DPSIR framework is that following it sequen-
tially, as described above, amounts to reactive man-
agement practices that are often too late to avert
significant environmental damage. It would be far bet-
ter, as the quotation at the start of this article sug-
gests, to be able to look forwards and predict possible
impacts so that they can be averted. Thus, there is
great need to forecast the impact of environmental
drivers and pressures on the state of the environment.

EXTRAPOLATION OF TRENDS – THE
SIMPLEST WAY TO FORECAST

By far the most straightforward way of predicting
future states of the environment is to identify past
trends in state over time and extrapolate these for-
wards using some kind of statistical model. For
example the Global Biodiversity Outlook 4 report
(GBO-4; Secretariat of the Convention on Biological
Diversity, 2014) includes indicator-based extrapola-
tions of recent and current trends to 2020. The
report states ‘The assessment of progress towards
the Aichi Biodiversity Targets in GBO-4 is informed
by recent trends in 55 biodiversity-related indicators
and their statistical extrapolation to 2020’. Extrapo-
lation can sometimes work well. For example, as

Figure 1. The ‘DPSIR’ framework with an example of

drivers, pressures, state and impacts in capitalised font.
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shown in Figure 2A and B for the butterfly species
Aphantopus hyperantus, a linear trend fitted to
a national population index from 1980 to 2000
adequately predicts abundances for the subsequent
13 years (mean absolute error = 0.076). In other
cases, extrapolation does a poor job at predicting the
future state of an environmental variable. This situa-
tion might be due to several reasons: (1) there is sub-
stantial error in our measurement of the system
state; (2) our statistical model is inadequate (e.g. fit-
ting a linear trend when there is significant curva-
ture); (3) there is a high degree of short-term
variability in the system state about some trend
(sometimes called ‘stochasticity’); or (4) the ‘rules’
that govern the system state change over time (i.e.

the drivers and pressures change). Examples of
unsuccessful extrapolations are shown for the butter-
fly species Euphydryas aurinia (Fig. 2C, D; mean
absolute error = 0.217) and Hesperia comma
(Fig. 2E, F; mean absolute error = 0.421). In these
cases, neither linear models, nor second or third
order polynomials, fitted to 1980–2000 data are able
to adequately predict population indices in the subse-
quent 13 years.

Why are extrapolations so poor for these species?
The population indices are collated from a reason-
ably large number of sites (mean number of sites per
year for each species � standard error: A. hyperan-
tus = 324.7 � 32.3; E. Aurinia = 62.5 � 5.24; Hespe-
ria comma = 25.8 � 1.9) and so any measurement
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Figure 2. Extrapolations of population abundance for three butterfly species: the Ringlet Aphantopus hyperantus (A,

B); Marsh Fritillary Euphydryas aurinia (C, D); and Silver Spotted Skipper Hesperia comma (E, F). Left hand panels

show the UK national log collated index of abundance with a linear trend fitted to the data from 1980 to 2000 and used

to predict abundance from 2001 onwards (open circles). The right hand panel shows the absolute difference between pre-

dicted and observed values.
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errors should cancel each other out and have negligi-
ble effect. With regards to the statistical model, for
each species three different models were compared
(linear and second and third order polynomials) and
in both cases the linear model was the best fit to the
1980–2000 data. In the case of E. aurinia (Fig. 2C,
D), the interannual population variability is very
large, and although the linear model is a better fit
compared with models with curvature, the predicted
values of the population index are often poor esti-
mates. This factor may be problematic if accurate
annual predictions are necessary; for example, if we
were aiming to predict the abundance of a pest spe-
cies in order to inform prophylactic pesticide applica-
tion. It may be possible to predict some of the
interannual variability in population abundances
with models incorporating the factors that drive pop-
ulation dynamics (see next section), but there will
often remain variation left over that we are unable
to explain (e.g. resulting from demographic stochas-
ticity). Despite this outcome, it is notable that errors
in our predictions do not necessarily get markedly
worse the further on in time a prediction is made
(e.g. Fig. 2D; regression of absolute error by year:
F1,11 = 0.42, P = 0.53). Therefore, if accurate annual
predictions are not so important, but we are rather
more interested in broad forecasts of future popula-
tion trends, e.g. to allocate conservation funding
appropriately, then large interannual population var-
iability may not be such an issue (Roy et al., 2001).
The exception here would be for special cases in
which stochasticity itself changes over time (e.g.
changing environmentally induced stochasticity as
populations move towards – or away – from the edge
of their fundamental niche space as the climate
changes; Oliver, Brereton & Roy, 2013; Oliver et al.,
2014).

Our third example (Hesperia comma; Fig. 2E, F),
is also a poor forecast from extrapolation, but in this
case the interannual population variability is rela-
tively low (Bennie et al., 2013). Instead, the linear
trend, which is a good fit to the population indices
between 1980 and 2000, is a poor fit to the data from
2001 onwards, with the predictions getting notice-
ably worse the further ahead we try to predict
(Fig. 2F; regression of absolute error by year:
F1,11 = 18.2, P = 0.001). The population trajectory
has changed direction, presumably because density-
dependent processes are beginning to operate or
because the primary drivers that affect populations
(e.g. climate, habitat quality, habitat extent) have
changed over the duration of the monitoring period.
This problem is critical for extrapolation methods,
because by using data only on the system state we
cannot account for changes in drivers. Instead, they
are assumed to be constant; an assumption that is

very often contravened. For example, Mason et al.
(2015) consider rates of distribution change (north-
ern range margin shift) in four different animal
groups over two time intervals (from 1970 to 2010)
and find that rates of change in the first time inter-
val are poor predictors of rates of change in the sub-
sequent time interval. What are these changes in
drivers that underlie species responses?

The UK National Ecosystem Assessment (UK
NEA, 2011) was the first comprehensive review of
drivers of change in biodiversity and other ecosystem
services. It assessed the historic impact of drivers,
but also their expected future impact. It is notable
that the magnitude of drivers often changes over
time. For example, habitat loss and pollution have
been the primary causes of biodiversity loss in the
UK over the last century, but the impacts of these
drivers are expected to lessen, with climate change
and invasive species becoming the major new drivers
of change (UK NEA, 2011). Similar patterns are
likely to be occurring across other heavily modified
temperate landscapes. For example, Carvalheiro
et al. (2013) suggest that pollinator declines in a
number of northwest European countries may have
slowed, probably due to a peak in the conversion of
land use to intensive agriculture. In addition to
changes in the magnitude of existing drivers, new
drivers may emerge with the advent of new technolo-
gies (August et al., 2015). For example, a recent hori-
zon scanning exercise by Sutherland et al. (2008)
identified nanotechnology and geoengineering as
fields with a large potential to impact biodiversity.
Finally, drivers of change also interact in their envi-
ronmental impacts, leading to non-linearity in
responses (Brook, Sodhi & Bradshaw, 2008). For
example, climate and land-use change can interact
on biodiversity through a wide range of mechanisms
affecting processes from demography to metapopula-
tion structure and community interactions (Oliver &
Morecroft, 2014). All these changes in drivers mean
that simple extrapolations of system state are often a
poor method of forecasting, especially over longer
timescales. Instead, statistical models are needed
that can incorporate the impact of drivers and how
these may change in the future.

FORECASTING CHANGES IN DRIVERS AND
PRESSURES

In order to incorporate the impact of pressures on
the state of environmental systems we need to
understand their functional relationships (e.g. what
is the relationship between weather variables and a
species’ population size), and also anticipate how
pressures are likely to change in the future (e.g.
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what will future weather be like under climate
change). Effects may be direct (e.g. weather impacts
on demographic rates) or indirect (e.g. mediated
through impacts on other species that interact with
the focal species). The former task of understanding
causal relationships can be achieved through experi-
mentation (e.g. Tilman et al., 1994) or through
observation of ‘natural experiments’ (i.e. using long-
term monitoring of system state and relating this to
naturally occurring changes in drivers and pres-
sures; Baker et al., 2012; Eglington & Pearce-Hig-
gins, 2012; Roy et al., 2001). Both these methods are
costly and time consuming, but the experimental
designs (e.g. split-plot field experiments, long-term
monitoring networks) and statistical analysis tech-
niques needed (e.g. multivariate regressions, hierar-
chical mixed modelling and structural equation
modelling) are well versed in the ecological sciences.
In contrast, the latter task of anticipating future
changes in drivers and pressures is more difficult
and less practiced. One technique would be to use
extrapolative techniques to predict how drivers and
pressures may change based on past temporal
trends. For example the GBO-4 report (Secretariat
of the Convention on Biological Diversity, 2014) uses
extrapolations of trends in human population size,
gross domestic product, intensity of resource use,
agricultural subsidies and surplus nitrogen in the
environment. However, the problems with extrapola-
tion of the state of the environment outlined above
also hold true for extrapolation of pressures affecting
system state – the pressures themselves are affected
by multiple other factors (drivers) that may have
non-linear trends over time. These more proximate
drivers are themselves affected by other drivers, and
so on. For example, nitrogen deposition is affected
by both the cost of petrochemical fertilisers and price
of crops in the world market, these factors them-
selves are affected by other more ultimate drivers
such as population growth and development of alter-
native resource extraction and food production tech-
nologies. Suddenly we are faced with an enormous
task: to forecast how a given pressure might change
we need to understand the whole chain of causality
affecting that pressure (the ‘infinite regress of driv-
ers’ dilemma). Much ecological science, and indeed
science in general, has tended to be reductionist in
its approach, focusing on specific causal relation-
ships, but more systematic ways of thinking are evi-
dent in ancient eastern world views (e.g. the
Buddhist concept of ‘Prat�ıtyasamutp�ada’) that
strongly emphasises the interdependency of entities
and multiple causal linkages between them, and also
feature in ‘systems ecology’ approaches (Odum, 1983;
Schellnhuber, 1999; Evans et al., 2013). Yet, there
are clear practical limitations to understanding

changes to specific pressures by tracing causal links
across the entire socio-ecological-economic system;
effectively, this relies on a statistical model of the
entire world!

At this point, one might be tempted to throw in
the towel and give up trying to forecast future envi-
ronmental states. However, returning to our original
reason for attempting forecasting – that without it
we rely on reactive management that is often too late
to avert significant environmental damage – we are
reminded that forecasting, although difficult, is very
necessary. What is needed is a practical way forward
that still remains as rigorous as possible. Pragmatic
approaches to the problem so far have tended to
either focus on one specific chain of causality affect-
ing the environmental state (e.g. how climate change
will affect local temperatures and how these will
affect species populations; Thomas et al., 2004), or to
adopt a ‘storyline’ scenario approach where various
possible socioeconomic scenarios are described and
then a deliberative approach used to translate how
changes in more ultimate drivers (such as population
size, climate, new technologies) will impact on proxi-
mate pressures that affect environmental states.
This latter approach is adopted by the Millennium
Ecosystem Assessment (2005) and also in UK
National Ecosystem Assessment (UK NEA, 2011) in
order to explore how different socioeconomic scenar-
ios might affect the state of the environment and the
ecosystem services it provides. Both approaches have
advantages but also some key problems.

The first approach that focuses on a single ‘chain’
of causality can afford more detailed quantitative
analysis, but because this approach is more reduc-
tionist it ignores the importance of other interacting
drivers and pressures on the system state. This may
be warranted where there is good evidence for an
overwhelmingly strong influence of one driver, which
explains a large proportion of variance in the system
state. For example, Figure 3 illustrates predictive
correlative models for the abundance of three butter-
fly species, whose population dynamics are driven by
annual weather and density dependence to varying
extents. The first species, Melanargia galathea (A
and B), shows a reasonably good fit between pre-
dicted and observed abundance in the model calibra-
tion period (R2 = 0.68 with density dependence
effects incorporated in models, R2 = 0.53 without),
and also in the model validation (mean absolute
error [MAE] = 0.14–0.15) and the ‘forecasting’ peri-
ods (MAE = 0.10–0.11). In contrast, for the species
Celastrina argiolus (C and D) even though goodness-
of-fit for the model incorporating density dependence
is greater than the one without (R2 = 0.72 compared
with 0.54) and there is little apparent difference
in model fit in the validation period (MAE = 0.21
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compared with 0.17), it turns out that the simpler
model without density dependence performs slightly
better in the forecasting period (MAE = 0.29 com-
pared with 0.4). Interestingly, this species is one in
which population dynamics are anecdotally thought
to be driven by parasitoids, causing what looks like
6- to 8-year cycles (Revels, 2006). In fact, Figure 3D
shows that a model with just three weather variables
(spring rainfall in the current year, and autumn
temperatures in the previous 2 years) can predict
the population dynamics reasonably well. In other
cases, it may be much less easy to predict abun-
dances using weather variables. This can be despite
an apparent good fit of models in the calibration per-
iod. For example, the species Lasiommata megara
(Fig. 3E, F) has a model with a high goodness-of-fit
between predicted and observed abundance in the

model calibration period (R2 = 0.83 for the model also
incorporating density dependence effects; Fig. 3E), yet
forecasts are very poor (actually predicting local
extinction by 2004). In this case, it would be clear from
validation that the model without density dependence
is actually a better predictor (MAE = 0.39 compared
with 3.96) despite the markedly lower goodness-of-fit
in the calibration period (R2 = 0.13). This outcome
might be because density-dependent processes are
changing over time (e.g. due to changes in the para-
sites or pathogens that drive density dependence).
Importantly, in ‘free running’ predictions (in which
abundance is sequentially estimated as a function of
abundance in the previous year) any errors in mod-
elled density dependence relationships quickly accu-
mulate, leading to very large prediction errors in just
a few years.
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Figure 3. Observed (filled circles) and predicted annual abundance for three butterfly species: Melanargia galathea (A,

B); Celastrina argiolus (C, D); and Lasiommata megara (E, F). Left hand panels show multiple regression models fitted

to log abundance indices in a model calibration period from 1980 to 1995. The models include the three most important

weather variables for each species (G. Palmer, J.K. Hill, T.M. Brereton, D.R. Brooks, J.W. Chapman, R. Fox, T.H. Oli-

ver, C.D. Thomas submitted), and the previous years’ density as explanatory variables. Each model is then used for

hindcasting abundances in the calibration period using the observed density the previous year along with the observed

weather variables (open circles). The goodness-of-fit (R2) of the model is shown in the top left corner of each panel. Also

shown are free running abundance predictions for a validation period from 1995 to 2000 (open triangles) and a ‘forecast-

ing’ period from 2000 to 2012 (crosses). The mean absolute error of predictions is given in the top right hand corner of

each panel. The right hand panels (B, D, F) are similar, but the models are fitted to only the three most important

weather variables for the species without a density-dependence term.
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These examples highlight the inherent difficulties
of ecological forecasting. A good fit of models in
calibration periods is not a sufficient indicator of
good predictive ability, and only after successful vali-
dation should models be used for prediction. In prac-
tice, prediction errors would be larger than shown
here because true forecasts would be based on esti-
mates of weather from downscaled climate models,
rather than the observed weather variables used
here. Even with observed weather data and even
though ectothermic butterflies tend to be highly
responsive to weather, these correlative statistical
models based on large datasets still only had limited
predictive ability. Relationships with density and
weather could change over time (e.g. due to changes
in the factors causing density dependence, such as
the aggregation of natural enemies, and due to evo-
lutionary adaptation of populations to changes in cli-
mate). In addition, other drivers beyond climate are
likely to be important in driving population changes
(e.g. habitat quality).

The second ‘storyline’ scenario approach to predict-
ing the impacts of environmental change has the
advantage of considering many different interacting
drivers and pressures. The scenarios generated are
not necessarily taken as predictions of the future
but, rather, delineate a wide range of possible out-
comes in the parameter space of multiple drivers and
pressures. The major disadvantage of this approach,
however, is that the large number of causal relation-
ships between multiple drivers and environmental
state, including interaction effects, means that pre-
dictive models are nearly impossible to parameterise
empirically; instead, these rely on expert opinion, or
a combination of both such as Bayesian belief net-
works (Haines-Young et al., 2011). The other key
problem is that the models are so complex that any
resulting differences in environmental state between
scenarios are difficult to attribute back to specific
drivers. For example, the UK National Ecosystem
Assessment includes various storyline scenarios such
as ‘Nature at Work’ and the ‘National Security’ that
differ greatly in predicted ecosystem services (Bat-
eman et al., 2011; Haines-Young et al., 2011). How-
ever, it is impossible to say whether this is due to
differences in protected area coverage, the extent of
several different cover types, or due to varying
impacts of climate change, which all differ between
the scenarios.

For successful ecological forecasting, it is neces-
sary to find a practical compromise between the two
extremes of quantitative reductionism (which
ignores multiple interacting drivers) and a fully sys-
temic approach (which is too complex to paramete-
rise and to attribute final changes in environment
state). Below we suggest a practical middle ground

that may potentially reconcile these extreme
approaches.

KEY DRIVER AND RESPONSE –TEST
SCENARIOS

One possible middle-ground solution for ecological
forecasting lies in identifying the minimum number
of key drivers or pressures that is demonstrated
(through empirical analysis or expert opinion) to
strongly influence an environmental state variable
over the time frame of interest. This solution avoids
the excessive complexity of considering all drivers in
models, but also extends beyond the simplistic view
of considering change in one driver in isolation. The
suite of drivers considered may already be operating
or they may be potential new drivers. In addition,
interactions between drivers should also be consid-
ered when relevant. In order to make our ecological
forecast models of applied use, we should also con-
sider alterative possible ‘response’ options (i.e. man-
agement solutions). For example, in considering the
possible impact of climate change on populations of a
species we might consider a range of land-use sce-
narios that, through the existence of land-use
climate interactions, potentially allows the ameliora-
tion of climate change impacts (i.e. ‘adaptation’ mea-
sures).

WHICH STATISTICAL METHOD TO USE?

Thus far, we have broadly considered ecological fore-
casting methods in terms of the merits of trend
extrapolation techniques versus multivariate models
that incorporate changes in drivers and pressures.
The latter method is recommended with a pragmatic
approach to selecting key drivers and incorporating
response options. However, we have so far discussed
specific statistical methods only fleetingly. A wide
range of statistical methods is relevant to this prob-
lem, ranging from simple correlative models to
highly complex individual-based ‘process’ models.
Table 1 gives examples of a range of methods that
spans a continuum of complexity and input data
requirements (also see Sutherland, 2006). Ecological
modellers often specialise on some part of this model
continuum. For example, fitting correlative models
across many species (macroecology) versus develop-
ing detailed individual-based models for specific spe-
cies (process-based modelling). Neither approach is
right or wrong and each one has its advantages and
disadvantages. Detailed process-based models are
often highly complex, aiming to incorporate many
biological processes (e.g. demographic parameters
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that vary in different environments, interspecific
interactions and evolutionary processes). As such,
they are more biologically realistic representations
with the potential for more accurate predictions.
However, the cost of this complexity is that many
more parameters need to be estimated, requiring sig-
nificantly more data to calibrate models. When one
considers the total numbers of species that one could
potentially be interested in for conservation ecology
(e.g. c. 70 000 in the UK, which is a relatively spe-
cies-poor country; UK Species Inventory, 2014; Gur-
ney, 2015), then it becomes clear that such data-
hungry models are impractical, unless they can be
shown to produce general responses that are repre-
sentative of many other species. At the other end of
the spectrum, extrapolative techniques or simple cor-
relative models, which consider species responses to
a single driver, may be too simplistic and ignore key
interactions between drivers. This lack of mechanis-
tic understanding behind species responses can mean
that predictions are inaccurate if drivers change in
non-linear ways over time. To identify a practical
way forward, again, the theory of the ‘middle way’
may help up to reconcile these extremes. Methods
are needed that balance the complexity needed to
make robust predictions with the feasibility of model
parameterisation given data availability. The three
methods in the middle rows of Table 1 are most
likely to achieve this balance and produce reliable
forecasts of environmental change for many species
in order to inform conservation responses. These
include phenomenological models and mechanistic
models. In practice, successful models may contain a
combination of both the above approaches, with well

known biological processes specified by mechanistic
relationships but with flexibility for unknown rela-
tionships to be estimated from the observed data
(Dormann et al., 2012).

RIGOUR IN PREDICTIVE MODELLING

In addition to selecting the most appropriate statisti-
cal modelling framework, the modelling approach
must be as rigorous as possible, in order to ensure
accurate predictions. This situation is especially
important if our forecasts are used as evidence to
implement prophylactic management to avert envi-
ronmental damage. Such management options may
have substantial costs and therefore need to be well
evidenced. For example, setting aside semi-natural
habitats to maintain pollinating insects under cli-
mate change has costs in terms of reduced land for
cropping and so strong evidence is needed to con-
vince stakeholders of the best land management
solution.

To select the most appropriate statistical model,
the goodness-of-fit to historic data of alternative
models is usually assessed. But this criterion alone
can lead to over-parameterised models that are poor
at predicting future environmental states. Instead,
model validation is necessary using data indepen-
dent of that used for model fitting. For example, Fig-
ure 3 shows how 20 years of historic monitoring data
can be split into 15 years for model fitting (of abun-
dance changes in relation to weather variables) and
five for model testing. This approach can prevent
overfitting and allow better predictions of subsequent

Table 1. Different statistical methods for ecological forecasting

Forecasting method Description Example

Extrapolation Descriptive statistical model of trend in

system state variable

Predicting species geographic range margins from

past rates of change

Simple

correlative models

Statistical relationship between driver or

pressure variable(s) and sytem

state variable

Predicting species distribution from relationships

between occurrence and climate variables

Phenomenological

models*

Statistical relationship between driver or

pressure and intermediate demographic

processes that combine to determine state

Predicting species abundance from climate impacts

on population growth, mortality and dispersal

Mechanistic model* Relationship between driver or pressure and

intermediate demographic processes based

on prior biological understanding

Predicting species abundance under climate

changes based on physiological relationships

between development rates and lethal

temperatures

Individual-based

models

Behavioural rules used to model individual

decisions, often in combination with

phenomological components relating to

demography

Predicting impacts of climate change on

individual movements and how this scales up

to species range margin shifts

*Note that this dichotomy is not strict and some models combine both phenomenological and mechanistic components.
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abundance (demonstrated here by hindcasting to the
most recent 13 years of data). In the absence of time
series data, space-for-time substitutions are the next
best option to validate models; for example, using
the model fitted to data in one area to predict envi-
ronmental state in a different area. There can be
problems with this approach, however, as a number
of different correlated variables may change across
spatial gradients (White & Kerr, 2006; Isaac et al.,
2010).

Despite the importance of validation, yet because
of its difficulty, several current modelling frame-
works are being used to predict future environmental
states with limited validation of the models. This
approach is especially evident in the recently emerg-
ing field of ecosystem service modelling (e.g. Nelson
et al., 2009, 2010; UK NEA, 2011; Bateman et al.,
2013). There is clearly a danger in implementing
management options with limited evidence. Under
such circumstances an adaptive management
approach is highly appropriate, in which the man-
agement actions predicted as most suitable are taken
but with regular monitoring to assess their effective-
ness. Past environmental policies have often tended
to be inflexible, however, leading to ‘lock-in’ to a set
of options with little consideration of adaptive man-
agement. For example, agri-environment schemes
put in place in the UK to prevent biodiversity
declines in agricultural landscapes were based on
synthesis of the evidence base for the effectiveness of
different management options. Over £400 M per year
is spent on these schemes in England (Natural Eng-
land, 2009), yet the budget to monitor the effective-
ness of these schemes (and validate the predictions
of their effectiveness) is a very small percentage of
this (< 1%). With this and many other environmental
policies, when seen in the context of ecological fore-
casting and its validation, there is a strong argument
for rebalancing spending on action versus monitoring
and analysis.

DATA FOR PREDICTIVE MODELS AND THE
IMPORTANCE OF BIOLOGICAL RECORDING

As discussed above, a wide range of environmental
drivers can impact species. Models of these causal
relationships (and the potential interactions between
drivers) will necessarily have several estimated
parameters, even when reduced to the subset of driv-
ers with the largest impacts. Therefore, substantial
datasets on species populations and measured values
of drivers are needed for model calibration and vali-
dation. These data may come from mesocosm or field
experiments, or ‘natural experiments’ comprising
the monitoring of natural populations over broad

environmental gradients. Mesocosm experiments
consider responses to a limited range of manipulated
variables under controlled conditions. They are
useful for testing theory and stimulating further
research (Benton et al., 2007), although the ability of
these systems to produce species responses similar to
those in the real world is questionable (Carpenter,
1996). Field experiments comprise a selected range
of treatments to consider the effects of different driv-
ers but at a larger scale and in more realistic set-
tings subject to ‘noise’ from other unmeasured
environmental drivers (Carpenter, 1998). Experimen-
tal manipulation is the ideal way to test ecological
theories (including those pertaining to relationships
between drivers and population responses), but field
experiments are very time consuming and expensive.
In addition, even in large-scale experiments, the lim-
ited spatial and temporal scale means that patterns
operating at large scales may be missed (e.g. Wiens,
Rotenberry & Van Horne, 1986). The alternative to
designed experiments is to exploit natural environ-
mental gradients and large-scale perturbations
(Carpenter, 1990). This approach requires monitoring
of species responses, ideally with high levels of
spatial and temporal replication that are necessary
to maintain statistical power in the face of combined
variability across wide range of environmental vari-
ables. Examples of such large-scale monitoring
include the collection of biological records (georefer-
enced records of species presences), such as those
held by the Biological Records Centre (Pocock et al.,
2015), the broad utility of which is demonstrated by
the articles within this issue (Chapman et al., 2015;
Gillingham et al., 2015; Mason et al., 2015; Powney
& Isaac, 2015; Purse & Golding, 2015; Roy, 2015;
Roy et al., 2015; Sutherland, Roy & Amano, 2015).
Abundance data such as that represented in species
monitoring schemes (e.g. the UK Butterfly Monitor-
ing Scheme data used in this paper), are even more
useful in allowing forecasts of abundance rather than
just species presence, although there is evidence that
distribution data can predict abundance to a limited
degree (Elmendorf & Moore, 2008; VanDerWal et al.,
2009; Oliver et al., 2012a,b). Monitoring data provide
a crucial resource for ecological forecasting because
of the large spatial and temporal extent that they
can cover. This resource is facilitated by the use of
trained volunteers that help to reduce the total costs
of monitoring schemes. Experimental approaches,
although much better for well controlled tests of the-
ory and testing management techniques, are often
too limited in their spatial coverage to adequately
inform ecological forecasts, at least beyond the loca-
tion of the experiment. For example, species
responses to weather conditions (a major driver of
population variation across most species) can be
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assessed using data from national monitoring
schemes (Roy et al., 2001; Wallis De Vries, Baxter &
Van Vliet, 2011; Eglington & Pearce-Higgins, 2012).
In addition, because weather effects are modified by
topography and habitat type not just at the local scale
but also by the structural composition of surrounding
landscapes (Oliver et al., 2010, 2012a, 2013), then it is
necessary to empirically model these effects in order
to make general forecasts beyond the responses of a
single site. Fortunately, some countries have well
established species monitoring schemes (e.g. the long
history of natural history recording in Britain), and
protocols for a number of currently unstudied species
groups and new monitoring schemes in other coun-
tries are currently under development. International
initiatives are also at work to synthesise monitoring
data (e.g. the global Biodiversity Observation
Network, GEOBON).

CONCLUSION

Overall, this review has highlighted the necessity of
ecological forecasting in order to avert environmental
damages that would occur under a solely reactive
management approach. Extrapolating from historic
environmental states will often be unsuccessful
because drivers and pressures themselves change in
non-linear ways and interact in their impact. New
pressures on systems, such as those from emerging
technologies, may also arise. The complexity of causal
pathways between drivers, pressures and environ-
mental state is effectively endless, so a pragmatic
approach is needed to focus on a subset of pathways
that have the greatest impact on system state. Addi-
tionally, incorporating possible response options in
our models will allow us to assess the effectiveness of
potential solutions to environmental damage. In terms
of modelling techniques, a compromise between com-
plexity (and potential biological realism) and feasibil-
ity given data availability will be necessary, but there
is also a key importance in validating models to
ensure that forecasts can be made with reasonable
confidence. Although ecological forecasting is very
difficult, it is also highly necessary. Much ecological
science has tended to focus on understanding current
and historic patterns and trends. However, there is a
clear need to step out of our comfort zones and develop
ecological forecasts in order to inform enviromental
management effectively.
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