

Global biodiversity indicators from heterogeneous re-purposed data: the PREDICTS project

Andy Purvis, Tim Newbold, Adriana De Palma, Sara Contu, Samantha Hill, Lawrence Hudson and many others

What is the trend in local biodiversity?

BioTime: No trend in species richness

Living Planet Index: 58% fall since 1970

Dornelas et al. 2014 Science

Living Planet Report 2016

What will happen next?

Need data linking diversity to pressure

Normalized Difference Vegetation Index

0	0.2	0.4	0.6	0.8

Need data linking diversity to pressure

Normalized Difference Vegetation Index

0	0.2	0.4	0.6	0.8

Many kinds of study design

• = sampling event; --- = treatment imposed; treatment site; control site

Control-Impact = space-for-time substitution

Time series = space-for-space substitution...

Fig. 1. Distribution of the survey sites included in our analysis. Data sets are color-coded to reflect their climatic region: pink, global; royal blue, polar; turquoise, polar-temperate; green, temperate; gold, temperate-tropical; red, tropical. See table S1 for details and sources of the data sets.

Dornelas et al. 2014 Science

Time series = time-for-time substitution too

http://forwarn.forestthreats.org/

'PREDICTS1': control-impact comparisons

Google 2 kn

Land use Land-use intensity Human population density Proximity to roads Accessibility from cities Time since 30% conversion

Biomes Biomes legend Map

Satellite

X Climate change X Invasive species X Overexploitation

Imagery ©2013 TerraMetrics - Terms of Use Report a map error

Data quality issues

- **Provenance** published studies only
- Consistency land use and use intensity of all sites classified using same framework
 - Repeatability assessed formally
 - Data provided in countless different formats
 - Curation cost MUCH more time & effort than expected!
- Representativeness geographic, taxonomic, ecological
- Transparency making the data freely available

Land use x Intensity matrix

Land use class	Minimal use	Light use	Intense use
Primary vegetation (composed of native vegetation, which is not known to have been destroyed during historical times)	Any threats identified are very minor (e.g., very light use) or very limited in the scope of their effect (e.g., hunting of a particular species of limted ecological importance).	One or more threats of moderate intensity (e.g., selective logging) or breadth of impact (e.g., bushmeat extraction), which are not severe enough to markedly change the nature of the ecosystem.	One or more threats that is severe enough to markedly change the nature of the ecosystem (e.g., clear-felling).
Mature Secondary Veg			
Intermediate Secondary Veg			
Young Secondary Veg			
Plantation forest			
Cropland (land people have planted with herbaceous crops)	Low-intensity farms, typically with small fields, mixed crops, crop rotation; little or none of the following – inorganic fertilizer, pesticide, ploughing, irrigation, mechanization.	Medium-intensity farming typically showing some but not many of: large fields, annual ploughing, inorganic fertilizer, irrigation, fixed crops, mechanisation, monoculture.	High-intensity monoculture farming, typically with many of: large fields, annual ploughing, inorganic fertilizer, pesticide, irrigation, fixed crops, mechanisation, monoculture.
Pasture			
Urban			

Database described in Hudson, Newbold et al. 2014 Ecol & Evol

Database has 767 studies, 32,078 sites, 98 countries, > 300 ecoregions

Database described in Hudson, Newbold et al. 2014 Ecol & Evol

Taxonomic coverage of 51,000 species

Names curated to Catalogue of Life 2013 so can link out to, e.g., GBIF, TRY

Open Access

The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

Lawrence N. Hudson¹*, Tim Newbold^{2,3}*, Sara Contu¹, Samantha L. L. Hill^{1,2}, Igor Lysenko⁴, Adriana De Palma^{1,4}, Helen R. P. Phillips^{1,4}, Rebecca A. Senior², Dominic J. Bennett⁴, Hollie Booth^{2,5}, Argyrios Choimes^{1,4}, David L. P. Correia¹, Julie Dav⁴, Susy Echeverría-Londoño^{1,4}, Morgan Garon⁴, Michelle L. K. Harrison⁴, Daniel J. Ingram⁶, Martin Jung⁷, Victoria Kemp⁴, Lucinda Kirkpatrick⁸, Callum D. Martin⁴, Yuan Pan⁹, Hannah J. White¹⁰, Job Aben¹¹, Stefan Abrahamczyk¹², Gilbert B. Adum^{13,14}, Virginia Aguilar-Barquero¹⁵, Marcelo A. Aizen¹⁶, Marc Ancrenaz¹⁷, Enrique Arbeláez-Cortés^{18,19}, Inge Armbrecht²⁰, Badrul Azhar^{21,22}, Adrián B. Azpiroz²³, Lander Baeten^{24,25}, András Báldi²⁶, John E. Banks²⁷, Jos Barlow^{28,29}, Péter Batáry³⁰, Adam J. Bates³¹, Erin M. Bayne³², Pedro Beja³³, Åke Berg³⁴, Nicholas J. Berry³⁵, Jake E. Bicknell^{36,37}, Jochen H. Bihn³⁸, Katrin Böhning-Gaese^{39,40}, Teun Boekhout⁴¹, Céline Boutin⁴², Jérémy Bouyer^{43,44}, Francis Q. Brearley⁴⁵, Isabel Brito⁴⁶, Jörg Brunet⁴⁷, Grzegorz Buczkowski⁴⁸, Erika Buscardo^{49,50,51}, Jimmy Cabra-García⁵², María Calviño-Cancela⁵³, Sydney A. Cameron⁵⁴, Eliana M. Cancello⁵⁵, Tiago F. Carrijo⁵⁵, Anelena L. Carvalho⁵⁶, Helena Castro⁵⁷, Alejandro A. Castro-Luna⁵⁸, Rolando Cerda⁵⁹, Alexis Cerezo⁶⁰, Matthieu Chauvat⁶¹, Frank M. Clarke⁶², Daniel F. R. Cleary⁶³, Stuart P. Connop⁶⁴, Biagio D'Aniello⁶⁵, Pedro Giovâni da Silva⁶⁶, Ben Darvill⁶⁷, Jens Dauber⁶⁸, Alain Dejean^{69,70}, Tim Diekötter^{71,72,73}, Yamileth Dominguez-Haydar⁷⁴ Carsten F. Dormann⁷⁵, Bertrand Dumont⁷⁶, Simon G. Dures^{4,77}, Mats Dynesius⁷⁸, Lars Edenius⁷⁹ Zoltán Elek⁸⁰, Martin H. Entling⁸¹, Nina Farwig⁸², Tom M. Fayle^{4,83,84}, Antonio Felicioli⁸⁵, Annika M. Felton⁸⁶, Gentile F. Ficetola⁸⁷, Bruno K. C. Filgueiras⁸⁸, Steven J. Fonte⁸⁹, Lauchlan H. Fraser⁹⁰, Daisuke Fukuda⁹¹, Dario Furlani⁹², Jörg U. Ganzhorn⁹³, Jenni G. Garden^{94,95}, Carla Gheler-Costa⁹⁶, Daisuke Fukuda²¹, Dario Furlani²⁺, Jorg U. Ganzhorn²⁺, Jenni G. Garden^{2++,--}, Caria Gneier-Losta²⁺, Paolo Giordani⁹⁷, Simonetta Giordano⁹⁸, Marco S. Gottschalk⁹⁹, Dave Goulson⁶, Aaron D. Gove^{100,101}, James Grogan¹⁰², Mick E. Hanley¹⁰³, Thor Hanson¹⁰⁴, Nor R. Hashim¹⁰⁵, Joseph E. Hawes^{106,107}, Christian Hébert¹⁰⁸, Alvin J. Helden¹⁰⁹, John-André Henden¹¹⁰, Lionel Hernández¹¹¹, Felix Herzog¹¹², Diego Higuera-Diaz¹¹³, Branko Hilje^{114,115}, Finbarr G. Horgan¹¹⁶, Roland Horváth¹¹⁷, Kristoffer Hylander¹¹⁸, Paola Isaacs-Cubides¹¹⁹, Masahiro Ishitani¹²⁰, Carmen T. Jacobs¹²¹, Víctor J. Jaramillo¹²², Birgit Jauker¹²³, Mats Jonsell¹²⁴, Thomas S. Jung¹²⁵, Vena Kapoor¹²⁶, Vassiliki Kati¹²⁷, Jaramillo¹⁴⁴, Birgit Jauker¹⁴⁷, Mats Jonseii ⁻, Inomas S. Jung ⁻, Vena Kapoor ⁻, Vassinki Kau ⁻, Eric Katovai^{128,129}, Michael Kessler¹³⁰, Eva Knop¹³¹, Annette Kolb¹³², Ádám Kőrösi^{133,134}, Thibault Lachat¹³⁵, Victoria Lantschner¹³⁶, Violette Le Féon¹³⁷, Gretchen LeBuhn¹³⁸, Jean-Philippe Légaré¹³⁹, Susan G. Letcher¹⁴⁰, Nick A. Littlewood¹⁴¹, Carlos A. López-Quintero¹⁴², Mounir Louhaichi¹⁴³, Gabor L. Lövei¹⁴⁴, Manuel Esteban Lucas-Borja¹⁴⁵, Victor H. Luja¹⁴⁶, Kaoru Maeto¹⁴⁷, Tibor Magura¹⁴⁸, Neil L. Lövei¹⁴⁴, Manuel Esteban Lucas-Borja¹⁴⁵, Victor H. Luja¹⁴⁶, Kaoru Maeto¹⁴⁷, Tibor Magura¹⁴⁸, Neil Aldrin Mallari^{149,150}, Erika Marin-Spiotta¹⁵¹, E. J. P. Marshall¹⁵², Eliana Martínez¹⁵³, Margaret M. Mayfield¹⁵⁴, Grzegorz Mikusinski¹⁵⁵, Jeffrey C. Milder¹⁵⁶, James R. Miller¹⁵⁷, Carolina L. Morales¹⁶, Mary N. Muchane¹⁵⁸, Muchai Muchane¹⁵⁹, Robin Naidoo¹⁶⁰, Akihiro Nakamura¹⁶¹, Shoji Naoe¹⁶², Guiomar Nates-Parra¹⁶³, Dario A. Navarrete Gutierrez¹⁶⁴, Eike L. Neuschulz³⁹, Norbertas Noreika¹⁶⁵, Olivia Norfolk¹⁶⁶, Jorge Ari Noriega¹⁶⁷, Nicole M. Nöske¹⁶⁸, Niall O'Dea¹⁶⁹, William Oduro^{13,14}, Caleb Ofori-Boateng^{170,171}, Chris O. Oke¹⁷², Lynne M. Osgathorpe¹⁷³, Juan Paritsis¹⁷⁴, Alejandro Parra-H^{175,176}, Nicolás Pelegrin¹⁷⁷, Carlos A. Peres¹⁷⁸, Anna S. Persson¹⁷⁹, Theodora Petanidou¹⁸⁰, Ben Phalan¹⁸¹, T. Keith Philips¹⁸², Katja Poveda¹⁸³, Eileen F, Power¹⁸⁴, Steven J, Presley¹⁸⁵, Vánia Proença¹⁸⁶, Marino Quaranta¹⁸⁷, Carolina Quintero¹⁷⁴, Nicola A. Redpath-Downing¹⁸⁸, J. Leighton Reid¹⁸⁹, Yana T. Reis¹⁹⁰, Danilo B. Ribeiro¹⁹¹, Barbara A. Richardson^{192,193}, Michael J. Richardson^{192,193}, Carolina A. Robles¹⁹⁴, Jörg Römbke^{39,195}, Luz Piedad Romero-Dugue¹⁹⁶, Loreta Richardson^{192,193}, Carolina A. Robles¹⁹⁴, Jörg Römbke^{39,195}, Luz Piedad Romero-Duque¹⁹⁶, Loreta Rosselli¹⁹⁶, Stephen J. Rossiter¹⁹⁷, T'ai H. Roulston^{198,199}, Laurent Rousseau²⁰⁰, Jonathan P. Sadler²⁰¹, Szabolcs Sáfján²⁰², Romeo A. Saldaña-Vázquez²⁰³, Ulrika Samnegård²⁰⁴, Christof Schüepp¹³¹, Oliver Schweiger²⁰⁵, Jodi L, Sedlock²⁰⁶, Ghazala Shahabuddin²⁰⁷, Douglas Sheil^{208,209}, Fernando A. B. Silva²¹⁰, Eleanor M. Slade²¹¹, Allan H. Smith-Pardo^{212,213}, Navjot S. Sodhi²¹⁴, Eduardo J. Somarriba⁵⁹, Ramón A. Sosa²¹⁵, Jane C. Stout²¹⁶, Matthew J. Struebig³⁶, Yik-Hei Sung²¹⁷, Caragh G. Threlfall²¹⁸, Rebecca Tonietto^{219,220}, Béla Tóthmérész²²¹, Teja Tscharntke³⁰, Edgar C. Turner²²², Jason M. Tylianakis^{4,223}, Adam J. Vanbergen²²⁴, Kiril Vassilev²²⁵, Hans A. F. Verboven²²⁶, Carlos H. Vergara²²⁷, Pablo M. Vergara²²⁸, Jort Verhulst²²⁹, Tony R. Walker^{166,230}, Yanping Wang²³¹, James I. Watling²³²,

Konstans Wells^{233,234}, Christopher D. Williams²³⁵, Michael R. Willig^{236,237}, John C. Z. Woinarski²³⁸, Jan H. D. Wolf²³⁹, Ben A. Woodcock²⁴⁰, Douglas W. Yu^{241,242}, Andrey S. Zaitsev^{243,244}, Ben Collen²⁴⁵, Rob M. Ewers⁴, Georgina M. Mace²⁴⁵, Drew W. Purves³, Jörn P. W. Scharlemann^{2,6} & Andy Purvis^{1,4}

¹Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. ²United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, U.K. ³Computational Ecology and Environmental Science, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, U.K. Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, U.K. ⁵Frankfurt Zoological Society, Africa Regional Office, PO Box 14935, Arusha, Tanzania ⁶School of Life Sciences, University of Sussex, Brighton, BN1 9QG, U.K. ⁷Center for Macroecology, Climate and Evolution, the Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark ⁸School of Biological and Ecological Sciences, University of Stirling, Bridge of Allan, Stirling, FK9 4LA, U.K. ⁹Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, U.K. ¹⁰School of Biological Sciences, Oueen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K. ¹¹Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium ¹²Nees Institute for Plant Biodiversity, University of Bonn, Meckenheimer Allee 170, 53113 Bonn, Germany ¹³Department of Wildlife and Range Management, FRNR, CANR, KNUST, Kumasi, Ghana 14SAVE THE FROGS! Ghana, Box KS 15924, Adum-Kumasi, Ghana ¹⁵Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. ¹⁶CONICET, Lab. INBIOMA (Universidad Nacional del Comahue-CONICET), Pasaje Gutierrez 1125, 8400 Bariloche, Rio Negro, Argentina ¹⁷HUTAN – Kinabatangan Orang-utan Conservation Programme, PO Box 17793, 88874 Kota Kinabalu, Sabah, Malaysia ¹⁸Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F., Mexico 19 Colección de Teiidos. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Km 17 Cali-Palmira, Valle del Cauca, Colombia ²⁰Department of Biology, Universidad del Valle, Calle 13 #100-00, Cali, Colombia ²¹Biodiversity Unit, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia ²²Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia ²³Laboratorio de Genética de la Conservación, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay ²⁴Department of Forest and Water Management, Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode, Belgium ²⁵Terrestrial Ecology Unit,Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium ²⁶MTA Centre for Ecological Research, Alkotmány u. 2-4, 2163 Vácrátót, Hungary ²⁷University of Washington, 1900 Commerce Street, Tacoma, Washington 98402 ²⁸Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YO, U.K. ²⁹MCT/Museu Paraense Emílio Goeldi, Belém, Pará, Brazil ³⁰Agroecology, Georg-August University, Grisebachstrasse 6, 37077 Göttingen, Germany ³¹University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K. ³²Department of Biological Sciences, University of Alberta, CW 405 – Biological Sciences Centre, Edmonton, AB T6G 2E9, Canada 33 EDP Biodiversity Chair, CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-601 Vairão, Portugal ³⁴The Swedish University of Agricultural Sciences, The Swedish Biodiversity Centre, SE 750 07 Uppsala, Sweden ³⁵University of Edinburgh, School of GeoSciences, Crew Building, King's Buildings, West Mains Road, Edinburgh EH9 3JN, U.K. ³⁶Durrell Institute of Conservation and Ecology (DICE). School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, U.K. ³⁷ wokrama International Centre for Rainforest Conservation and Development, 77 High Street, Georgetown, Guyana ³⁸Department of Animal Ecology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, 35032 Marburg, Germany ³⁹Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main. Germany ⁴⁰Institute for Ecology, Evolution & Diversity, Biologicum, Goethe University Frankfurt, Max von Laue St. 13, D 60439 Frankfurt am Main, Germany

²¹CBS-CMAW Frankfurt am Main, Germany ⁴¹CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands ⁴²Environment Canada, Science & Technology Branch, Carleton University, 1125 Colonel By Drive, Raven Road, Ottawa, ON K1A 0H3, Canada

⁴⁴Environment Canada, Science & Technology Branch, Carleton University, 1125 Colonel By Drive, Raven Road, Ottawa, ON K1A OH3, Canada ⁴³Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), 34398 Montpellier, France

⁴⁴Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut national de la recherche agronomique (INRA), 34398 Montpellier, France

⁴⁵School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, U.K.

⁴⁶University of Évora – ICAAMA, Apartado 94, 7002-554 Évora, Portugal

⁴⁷Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 230 53 Alnarp, Sweden

⁴⁸Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, 47907 Indiana
⁴⁹Centro de Ecologia Funcional, Departamento de Ciências da Vida, Universidade de Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra,

⁵⁰Escritório Central do LBA, Instituto Nacional de Pesquisa da Amazônia, Av. André Araújo, 2936, Campus II, Aleixo, CEP 69060-001, Manaus,

**Escritorio Central do LBA, Instituto Nacional de Pesquisa da Amazonia, Av. Andre Araujo, 2936, Campus II, Aleixo, CEP 69060-001, Manaus, AM, Brazil

⁵¹Department of Botany, School of Natural Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland

⁵²Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil

⁵³Department of Ecology and Animal Biology, Faculty of Sciences, University of Vigo, 36310 Vigo, Spain

2

1

Local richness, land use & intensity

Newbold, Hudson et al. 2015 Nature 520:45-50

'Hockey-stick curves' for richness

Newbold, Hudson et al. 2015 Nature 520:45-50

Is biodiversity within safe limits?

Steffen et al. 2015 Science

Biodiversity Intactness Index

BII = average abundance of species, relative to an unimpacted baseline... across many taxonomic groups... averaged across all land uses... excluding novel species

Scholes & Biggs 2005 Nature

Modelled Biodiversity Intactness Index for 2005

Global average = 84.6% (Planetary Boundary = 90%)

Newbold et al. 2016, Science 353:288-291.

UK State of Nature Report

BII may be overestimated because:

- island biotas more sensitive?
- much UK land conversion is old
- map use in projection does not have plantation forest
- little/no chance for influx from nearby primary vegetation
- models do not (yet) consider fragmentation

Work in progress: annual estimates of BII

Bll increases & decreases 2001-2012: very preliminary

De Palma, Hoskins et al., in prep.

Conclusions

- Linking biodiversity data to pressure data allows more powerful modelling
- Control-Impact studies are most common
 - Assume space-for-time, but not space-for-space or time-for-time, as time series data do
- Land use has reduced average biodiversity
 - Species-richness down by 13.6%
 - Biodiversity Intactness Index (BII) down by 15.4%
 - 58.4% of land surface below "planetary boundary"
- Annual BII ready soon
 - Feeding into policy processes and documents

'PREDICTS2': dynamics

Normalized Difference Vegetation Index

0	0.2	0.4	0.6	0.8

'PREDICTS2': dynamics

Normalized Difference Vegetation Index

0	0.2	0.4	0.6	0.8

Please share your data with us!

- Known time of land-use/intensity/pressure change
 - e.g., logging, fire, urban expansion, conversion to organic farm, start of restoration...
- Published study (data can go beyond latest paper)
- BACI is ideal
 - then "After-Control-Impact" and "Before-After"; then "Reference-After"; then "After"
- Will publish Open-Access database paper; data will be at data.nhm.ac.uk

andy.purvis@nhm.ac.uk

Measuring site-level biodiversity

